Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR20-180 | 2nd December 2020
Yuval Filmus, Or Meir, Avishay Tal

Shrinkage under Random Projections, and Cubic Formula Lower Bounds for $\mathbf{AC}^0$

Revisions: 3

HÃ¥stad showed that any De Morgan formula (composed of AND, OR and NOT gates) shrinks by a factor of $O(p^{2})$ under a random restriction that leaves each variable alive independently with probability $p$ [SICOMP, 1998]. Using this result, he gave an $\widetilde{\Omega}(n^{3})$ formula size lower bound for the Andreev function, ... more >>>


TR20-179 | 2nd December 2020
Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, Madhu Sudan

Decoding Multivariate Multiplicity Codes on Product Sets

The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of zeroes of a multivariate polynomial on a product set. This lemma motivates the multiplicity codes of Kopparty, Saraf and Yekhanin [J. ACM, 2014], who showed how to use this lemma to construct high-rate locally-decodable codes. However, the algorithmic results about these ... more >>>


TR20-178 | 30th November 2020
Stasys Jukna, Hannes Seiwert, Igor Sergeev

Reciprocal Inputs in Arithmetic and Tropical Circuits

It is known that the size of monotone arithmetic $(+,\ast)$ circuits can be exponentially decreased by allowing just one division "at the very end," at the output gate. A natural question is: can the size of $(+,\ast)$ circuits be substantially reduced if we allow divisions "at the very beginning," that ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint