
PreviousNext
Computational pseudorandomness studies the extent to which a random variable $\bf{Z}$ looks like the uniform distribution according to a class of tests $\cal{F}$. Computational entropy generalizes computational pseudorandomness by studying the extent which a random variable looks like a \emph{high entropy} distribution. There are different formal definitions of computational entropy ... more >>>
Higher order random walks (HD-walks) on high dimensional expanders have played a crucial role in a number of recent breakthroughs in theoretical computer science, perhaps most famously in the recent resolution of the Mihail-Vazirani conjecture (Anari et al. STOC 2019), which focuses on HD-walks on one-sided local-spectral expanders. In this ... more >>>
We present an explicit and efficient algebraic construction of capacity-achieving list decodable codes with both constant alphabet and constant list sizes. More specifically, for any $R \in (0,1)$ and $\epsilon>0$, we give an algebraic construction of an infinite family of error-correcting codes of rate $R$, over an alphabet of size ... more >>>
PreviousNext