
PreviousNext
In this work, we initiate the study of proximity testing to Algebraic Geometry (AG) codes. An AG code $C = C(\mathcal C, \mathcal P, D)$ is a vector space associated to evaluations on $\mathcal P$ of functions in the Riemann-Roch space $L_\mathcal C(D)$. The problem of testing proximity to an ... more >>>
A function $f(x_1, \dots, x_n)$ from a product domain $\mathcal{D}_1 \times \cdots \times \mathcal{D}_n$ to an abelian group $\mathcal{G}$ is a direct sum if it is of the form $f_1(x_1) + \cdots + f_n(x_n)$. We present a new 4-query direct sum test with optimal (up to constant factors) soundness error. ... more >>>
In this work we ask the following basic question: assume the vertices of an expander graph are labelled by $0,1$. What "test" functions $f : \{ 0,1\}^t \to \{0,1\}$ cannot distinguish $t$ independent samples from those obtained by a random walk? The expander hitting property due to Ajtai, Komlos and ... more >>>
PreviousNext