Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #2 to TR12-121 | 16th March 2013 10:46

A note on the real $\tau$-conjecture and the distribution of roots

RSS-Feed




Revision #2
Authors: Pavel Hrubes
Accepted on: 16th March 2013 10:46
Downloads: 2619
Keywords: 


Abstract:


Koiran's real $\tau$-conjecture asserts that if a non-zero real polynomial can be written as $f=\sum_{i=1}^{p}\prod_{j=1}^{q}f_{ij}$, where each $f_{ij}$ contains at most $k$ monomials, then the number of distinct real roots of $f$ is polynomial in $pqk$. We show that the conjecture implies quite a strong property of the complex roots of $f$: their arguments are uniformly distributed except for an error which is polynomial in $pqk$. That is, if the conjecture is true, $f$ has degree $n$ and $f(0)\not=0$, then
for every $00$ and $\beta<\phi <\alpha$, counted with multiplicities.
In particular, if the real $\tau$-conjecture is true, it is also true when multiplicities of non-zero real roots are included.


Revision #1 to TR12-121 | 4th December 2012 20:06

A note on the real $\tau$-conjecture and the distribution of roots





Revision #1
Authors: Pavel Hrubes
Accepted on: 4th December 2012 20:06
Downloads: 2545
Keywords: 


Abstract:

Koiran's real $\tau$-conjecture asserts that if a non-zero real polynomial can be written as $f=\sum_{i=1}^{p}\prod_{j=1}^{q}f_{ij},$
where each $f_{ij}$ contains at most $k$ monomials, then the number of distinct real roots of $f$ is polynomial in $pqk$. We show that the conjecture implies quite a strong property of the complex roots of $f$: their arguments are uniformly distributed except for an error which is polynomial in $pqk$. In particular, if the real $\tau$-conjecture is true it also true when multiplicities of real roots are included.


Paper:

TR12-121 | 25th September 2012 00:16

A note on the real $\tau$-conjecture and the distribution of roots





TR12-121
Authors: Pavel Hrubes
Publication: 25th September 2012 02:24
Downloads: 3158
Keywords: 


Abstract:

Koiran's real $\tau$-conjecture asserts that if a non-zero real polynomial can be written as $f=\sum_{i=1}^{p}\prod_{j=1}^{q}f_{ij},$
where each $f_{ij}$ contains at most $k$ monomials, then the number of distinct real roots of $f$ is polynomial in $pqk$. We show that the conjecture implies quite a strong property of the complex roots of $f$: their arguments are uniformly distributed except for an error which is polynomial in $pqk$. In particular, if the real $\tau$-conjecture is true it also true when multiplicities of real roots are included.



ISSN 1433-8092 | Imprint