Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR13-089 | 18th June 2013 21:27

On testing bent functions

RSS-Feed




Revision #1
Authors: Abhishek Bhrushundi
Accepted on: 18th June 2013 21:27
Downloads: 940
Keywords: 


Abstract:

A bent function is a Boolean function all of whose Fourier coefficients are equal in absolute value. These functions have been extensively studied in cryptography and play an important role in cryptanalysis and design of cryptographic systems.
We study bent functions in the framework of property testing. In particular, we show that testing whether a given Boolean function on $n$ variables is bent, or $\frac{1}{8}$-far from being bent, requires $\Omega(n^2)$ queries.
As an intermediate step in our proof, we show that the query complexity of testing if a given function is a quadratic bent function, or $\frac{1}{4}$-far from being so, is $\Theta(n^2)$. We remark that this problem is equivalent to testing affine-isomorphism to the inner product function.
Our proof exploits the recent connection between property testing and parity decision trees due to Chakraborty and Kulkarni. We believe our techniques might be useful in proving lower bounds for other properties of quadratic polynomials.



Changes to previous version:

Added reference to Lemma 7


Paper:

TR13-089 | 17th June 2013 21:28

On testing bent functions





TR13-089
Authors: Abhishek Bhrushundi
Publication: 17th June 2013 21:43
Downloads: 967
Keywords: 


Abstract:

A bent function is a Boolean function all of whose Fourier coefficients are equal in absolute value. These functions have been extensively studied in cryptography and play an important role in cryptanalysis and design of cryptographic systems.
We study bent functions in the framework of property testing. In particular, we show that testing whether a given Boolean function on $n$ variables is bent, or $\frac{1}{8}$-far from being bent, requires $\Omega(n^2)$ queries.
As an intermediate step in our proof, we show that the query complexity of testing if a given function is a quadratic bent function, or $\frac{1}{4}$-far from being so, is $\Theta(n^2)$. We remark that this problem is equivalent to testing affine-isomorphism to the inner product function.
Our proof exploits the recent connection between property testing and parity decision trees due to Chakraborty and Kulkarni. We believe our techniques might be useful in proving lower bounds for other properties of quadratic polynomials.



ISSN 1433-8092 | Imprint