Loading jsMath...
Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR14-123 | 7th October 2014 02:39

Improved noisy population recovery, and reverse Bonami-Beckner inequality for sparse functions

RSS-Feed




TR14-123
Authors: Shachar Lovett, Jiapeng Zhang
Publication: 7th October 2014 03:20
Downloads: 3776
Keywords: 


Abstract:

The noisy population recovery problem is a basic statistical inference problem. Given an unknown distribution in \{0,1\}^n with support of size k,
and given access only to noisy samples from it, where each bit is flipped independently with probability 1/2-\eps,
estimate the original probability up to an additive error of \eps. We give an algorithm which solves this problem in time polynomial in (k^{\log \log k}, n, 1/\eps).
This improves on the previous algorithm of Wigderson and Yehudayoff [FOCS 2012] which solves the problem in time polynomial in (k^{\log k}, n, 1/\eps).
Our main technical contribution, which facilitates the algorithm, is a new reverse Bonami-Beckner inequality for the L_1 norm of sparse functions.



ISSN 1433-8092 | Imprint