Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR15-082 | 13th May 2015 17:29

Beating the random assignment on constraint satisfaction problems of bounded degree

RSS-Feed

Abstract:

We show that for any odd $k$ and any instance of the Max-kXOR constraint satisfaction problem, there is an efficient algorithm that finds an assignment satisfying at least a $\frac{1}{2} + \Omega(1/\sqrt{D})$ fraction of constraints, where $D$ is a bound on the number of constraints that each variable occurs in. This improves both qualitatively and quantitatively on the recent work of Farhi, Goldstone, and Gutmann (2014), which gave a \emph{quantum} algorithm to find an assignment satisfying a $\frac{1}{2} + \Omega(D^{-3/4})$ fraction of the equations.
For arbitrary constraint satisfaction problems, we give a similar result for ``triangle-free'' instances; i.e., an efficient algorithm that finds an assignment satisfying at least a $\mu + \Omega(1/\sqrt{D})$ fraction of constraints, where $\mu$ is the fraction that would be satisfied by a uniformly random assignment.



ISSN 1433-8092 | Imprint