Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR16-141 | 12th September 2016 19:42

SOS is not obviously automatizable, even approximately

RSS-Feed




Revision #1
Authors: Ryan O'Donnell
Accepted on: 12th September 2016 19:42
Downloads: 1176
Keywords: 


Abstract:

Suppose we want to minimize a polynomial $p(x) = p(x_1, \dots, x_n)$, subject to some polynomial constraints $q_1(x), \dots, q_m(x) \geq 0$, using the Sum-of-Squares (SOS) SDP hierarachy. Assume we are in the "explicitly bounded" ("Archimedean") case where the constraints include $x_i^2 \leq 1$ for all $1 \leq i \leq n$. It is often stated that the degree-$d$ version of the SOS hierarchy can be solved, to high accuracy, in time $n^{O(d)}$. Indeed, I myself have stated this in several previous works.

The point of this note is to state (or remind the reader) that this is not obviously true. The difficulty comes not from the "$r$" in the Ellipsoid Algorithm, but from the "$R$"; a priori, we only know an exponential upper bound on the number of bits needed to write down the SOS solution. An explicit example is given of a degree-$2$ SOS program illustrating the difficulty.



Changes to previous version:

Slightly improved an argument in Section 4, based on a suggestion of David Steurer.


Paper:

TR16-141 | 11th September 2016 21:40

SOS is not obviously automatizable, even approximately





TR16-141
Authors: Ryan O'Donnell
Publication: 11th September 2016 21:41
Downloads: 1470
Keywords: 


Abstract:

Suppose we want to minimize a polynomial $p(x) = p(x_1, \dots, x_n)$, subject to some polynomial constraints $q_1(x), \dots, q_m(x) \geq 0$, using the Sum-of-Squares (SOS) SDP hierarachy. Assume we are in the "explicitly bounded" ("Archimedean") case where the constraints include $x_i^2 \leq 1$ for all $1 \leq i \leq n$. It is often stated that the degree-$d$ version of the SOS hierarchy can be solved, to high accuracy, in time $n^{O(d)}$. Indeed, I myself have stated this in several previous works.

The point of this note is to state (or remind the reader) that this is not obviously true. The difficulty comes not from the "$r$" in the Ellipsoid Algorithm, but from the "$R$"; a priori, we only know an exponential upper bound on the number of bits needed to write down the SOS solution. An explicit example is given of a degree-$2$ SOS program illustrating the difficulty.



ISSN 1433-8092 | Imprint