Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR16-199 | 15th December 2016 17:08

The Journey from NP to TFNP Hardness

RSS-Feed




TR16-199
Authors: Pavel Hubacek, Moni Naor, Eylon Yogev
Publication: 15th December 2016 19:35
Downloads: 618
Keywords: 


Abstract:

The class TFNP is the search analog of NP with the additional guarantee that any instance has a solution. TFNP has attracted extensive attention due to its natural syntactic subclasses that capture the computational complexity of important search problems from algorithmic game theory, combinatorial optimization and computational topology. Thus, one of the main research objectives in the context of TFNP is to search for efficient algorithms for its subclasses, and at the same time proving hardness results where efficient algorithms cannot exist.

Currently, no problem in TFNP is known to be hard under assumptions such as NP hardness, the existence of one-way functions, or even public-key cryptography. The only known hardness results are based on less general assumptions such as the existence of collision-resistant hash functions, one-way permutations less established cryptographic primitives (e.g. program obfuscation or functional encryption).

Several works explained this status by showing various barriers to proving hardness of TFNP. In particular, it has been shown that hardness of TFNP hardness cannot be based on worst-case NP hardness, unless NP=coNP. Therefore, we ask the following question: What is the weakest assumption sufficient for showing hardness in TFNP?

In this work, we answer this question and show that hard-on-average TFNP problems can be based on the weak assumption that there exists a hard-on-average language in NP. In particular, this includes the assumption of the existence of one-way functions. In terms of techniques, we show an interesting interplay between problems in TFNP, derandomization techniques, and zero-knowledge proofs.



ISSN 1433-8092 | Imprint