Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR18-188 | 14th November 2018 21:29

Static Data Structure Lower Bounds Imply Rigidity

RSS-Feed




Revision #1
Authors: Zeev Dvir, Alexander Golovnev, Omri Weinstein
Accepted on: 14th November 2018 21:29
Downloads: 2
Keywords: 


Abstract:

We show that static data structure lower bounds in the group (linear) model imply semi-explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower bound of $t \geq \omega(\log^2 n)$ on the cell-probe complexity of linear data structures in the group model, even against arbitrarily small linear space $(s= (1+\varepsilon)n)$, would already imply a semi-explicit ($P^{NP}$) construction of rigid matrices with significantly better parameters than the current state of art (Alon, Panigrahy and Yekhanin, 2009). Our results further assert that polynomial ($t\geq n^{\delta}$) data structure lower bounds against near-optimal space, would imply super-linear circuit lower bounds for log-depth linear circuits (a four-decade open question). In the succinct space regime $(s=n+o(n))$, we show that any improvement on current cell-probe lower bounds in the linear model would also imply new rigidity bounds. Our results rely on a new connection between the "inner" and "outer" dimensions of a matrix (Paturi and Pudlak, 2006), and on a new reduction from worst-case to average-case rigidity, which is of independent interest.



Changes to previous version:

Added a comparison with related work (including Viola 2018).


Paper:

TR18-188 | 7th November 2018 02:56

Static Data Structure Lower Bounds Imply Rigidity





TR18-188
Authors: Zeev Dvir, Alexander Golovnev, Omri Weinstein
Publication: 7th November 2018 03:05
Downloads: 127
Keywords: 


Abstract:

We show that static data structure lower bounds in the group (linear) model imply semi-explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower bound of $t \geq \omega(\log^2 n)$ on the cell-probe complexity of linear data structures in the group model, even against arbitrarily small linear space $(s= (1+\varepsilon)n)$, would already imply a semi-explicit ($P^{NP}$) construction of rigid matrices with significantly better parameters than the current state of art (Alon, Panigrahy and Yekhanin, 2009). Our results further assert that polynomial ($t\geq n^{\delta}$) data structure lower bounds against near-optimal space, would imply super-linear circuit lower bounds for log-depth linear circuits (a four-decade open question). In the succinct space regime $(s=n+o(n))$, we show that any improvement on current cell-probe lower bounds in the linear model would also imply new rigidity bounds. Our results rely on a new connection between the "inner" and "outer" dimensions of a matrix (Paturi and Pudlak, 2006), and on a new reduction from worst-case to average-case rigidity, which is of independent interest.



ISSN 1433-8092 | Imprint