Given an unpredictable Boolean function f: \{0, 1\}^n \rightarrow \{0, 1\}, the standard Yao's XOR lemma is a statement about the unpredictability of computing \oplus_{i \in [k]}f(x_i) given x_1, ..., x_k \in \{0, 1\}^n, whereas the Selective XOR lemma is a statement about the unpredictability of computing \oplus_{i \in S}f(x_i) given x_1, ..., x_k \in \{0, 1\}^n and S \subseteq \{1, ..., k\}. We give a reduction from the Selective XOR lemma to the standard XOR lemma. Our reduction gives better quantitative bounds for certain choice of parameters and does not require the assumption of being able to sample (x, f(x)) pairs.