Loading jsMath...
Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR20-182 | 9th May 2021 20:52

An Improved Derandomization of the Switching Lemma

RSS-Feed




Revision #1
Authors: Zander Kelley
Accepted on: 9th May 2021 20:52
Downloads: 771
Keywords: 


Abstract:

We prove a new derandomization of Håstad's switching lemma, showing how to efficiently generate restrictions satisfying the switching lemma for DNF or CNF formulas of size m using only \widetilde{O}(\log m) random bits. Derandomizations of the switching lemma have been useful in many works as a key building-block for constructing objects which are in some way provably-pseudorandom with respect to AC^0-circuits.

Here, we use our new derandomization to give an improved analysis of the pseudorandom generator of Trevisan and Xue for AC^0-circuits (CCC'13): we show that the generator \varepsilon-fools size-m, depth-D circuits with n-bit inputs using only \widetilde{O}(\log(m/\varepsilon)^{D} \cdot \log n) random bits. In particular, we obtain (modulo the \log \log-factors hidden in the \widetilde{O}-notation) a dependence on m/\varepsilon which is best-possible with respect to currently-known AC^0-circuit lower bounds.



Changes to previous version:

Fixed some typos.


Paper:

TR20-182 | 3rd December 2020 22:48

An Improved Derandomization of the Switching Lemma





TR20-182
Authors: Zander Kelley
Publication: 4th December 2020 22:39
Downloads: 1468
Keywords: 


Abstract:

We prove a new derandomization of Håstad's switching lemma, showing how to efficiently generate restrictions satisfying the switching lemma for DNF or CNF formulas of size m using only \widetilde{O}(\log m) random bits. Derandomizations of the switching lemma have been useful in many works as a key building-block for constructing objects which are in some way provably-pseudorandom with respect to AC^0-circuits.

Here, we use our new derandomization to give an improved analysis of the pseudorandom generator of Trevisan and Xue for AC^0-circuits (CCC'13): we show that the generator \varepsilon-fools size-m, depth-D circuits with n-bit inputs using only \widetilde{O}(\log(m/\varepsilon)^{D} \cdot \log n) random bits. In particular, we obtain (modulo the \log \log-factors hidden in the \widetilde{O}-notation) a dependence on m/\varepsilon which is best-possible with respect to currently-known AC^0-circuit lower bounds.



ISSN 1433-8092 | Imprint