Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR21-124 | 29th August 2021 16:04

On the Complexity of Two-Party Differential Privacy

RSS-Feed




Revision #1
Authors: Iftach Haitner, Noam Mazor, Jad Silbak, Eliad Tsfadia
Accepted on: 29th August 2021 16:04
Downloads: 414
Keywords: 


Abstract:

In distributed differential privacy, the parties perform analysis over their joint data while preserving the privacy for both datasets. Interestingly, for a few fundamental two-party functions such as inner product and Hamming distance, the accuracy of the distributed solution lags way behind what is achievable in the client-server setting. McGregor, Mironov, Pitassi, Reingold, Talwar, and Vadhan [FOCS ’10] proved that this gap is inherent, showing upper bounds on the accuracy of (any) distributed solution for these functions. These limitations can be bypassed when settling for computational differential privacy, where the data is differentially private only in the eyes of a computationally bounded observer, using public-key cryptography primitives.

We prove that the use of public-key cryptography is necessary for bypassing the limitation of McGregor et al., showing that a non-trivial solution for the inner-product, or the Hamming distance, implies the existence of a key-agreement protocol. Our bound implies a combinatorial proof for the fact that non-Boolean inner product of independent (strong) Santha-Vazirani sources is a good condenser. We obtain our main result by showing that the inner-product of a (single, strong) SV source with a uniformly random seed is a good condenser, even when the seed and source are dependent.


Paper:

TR21-124 | 17th August 2021 17:06

On the Complexity of Two-Party Differential Privacy





TR21-124
Authors: Iftach Haitner, Noam Mazor, Jad Silbak, Eliad Tsfadia
Publication: 29th August 2021 04:09
Downloads: 494
Keywords: 


Abstract:

In distributed differential privacy, the parties perform analysis over their joint data while preserving the privacy for both datasets. Interestingly, for a few fundamental two-party functions such as inner product and Hamming distance, the accuracy of the distributed solution lags way behind what is achievable in the client-server setting. McGregor, Mironov, Pitassi, Reingold, Talwar, and Vadhan [FOCS ’10] proved that this gap is inherent, showing upper bounds on the accuracy of (any) distributed solution for these functions. These limitations can be bypassed when settling for computational differential privacy, where the data is differentially private only in the eyes of a computationally bounded observer, using public-key cryptography primitives.

We prove that the use of public-key cryptography is necessary for bypassing the limitation of McGregor et al., showing that a non-trivial solution for the inner-product, or the Hamming distance, implies the existence of a key-agreement protocol. Our bound implies a combinatorial proof for the fact that non-Boolean inner product of independent (strong) Santha-Vazirani sources is a good condenser. We obtain our main result by showing that the inner-product of a (single, strong) SV source with a uniformly random seed is a good condenser, even when the seed and source are dependent.



ISSN 1433-8092 | Imprint