We investigate the complexity of languages that correspond to algebraic real numbers, and we present improved upper bounds on the complexity of these languages. Our key technical contribution is the presentation of improved uniform TC^0 circuits
for division, matrix powering, and related problems, where the improvement is in terms of "majority depth" (initially studied by Maciel and Therien). As a corollary, we obtain improved bounds on the complexity of certain problems involving arithmetic circuits, which are known to lie in the counting hierarchy, and we answer a question posed by Yap.
Simplified proof of Theorem 40. Several other minor corrections.
We investigate the complexity of languages that correspond to algebraic real numbers, and we present improved upper bounds on the complexity of these languages. Our key technical contribution is the presentation of improved uniform TC^0 circuits
for division, matrix powering, and related problems, where the improvement is in terms of "majority depth" (initially studied by Maciel and Therien). As a corollary, we obtain improved bounds on the complexity of certain problems involving arithmetic circuits, which are known to lie in the counting hierarchy, and we answer a question posed by Yap.
Several minor corrections.
We investigate the complexity of languages that correspond to algebraic real numbers, and we present improved upper bounds on the complexity of these languages. Our key technical contribution is the presentation of improved uniform TC^0 circuits
for division, matrix powering, and related problems, where the improvement is in terms of "majority depth" (initially studied by Maciel and Therien). As a corollary, we obtain improved bounds on the complexity of certain problems involving arithmetic circuits, which are known to lie in the counting hierarchy, and we answer a question posed by Yap.
Several minor corrections.
We investigate the complexity of languages that correspond to algebraic real numbers, and we present improved upper bounds on the complexity of these languages. Our key technical contribution is the presentation of improved uniform TC^0 circuits
for division, matrix powering, and related problems, where the improvement is in terms of "majority depth" (initially studied by Maciel and Therien). As a corollary, we obtain improved bounds on the complexity of certain problems involving arithmetic circuits, which are known to lie in the counting hierarchy, and we answer a question posed by Yap.
Somehow 2 revisions were processed, although there is only one revision. Don't bother trying to find a difference between the two revisions.