Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR23-013 | 28th February 2023 19:32

A Lower Bound on the Share Size in Evolving Secret Sharing

RSS-Feed




Revision #1
Authors: Noam Mazor
Accepted on: 28th February 2023 19:32
Downloads: 243
Keywords: 


Abstract:

Secret sharing schemes allow sharing a secret between a set of parties in a way that ensures that only authorized subsets of the parties learn the secret. Evolving secret sharing schemes (Komargodski, Naor, and Yogev [TCC ’16]) allow achieving this end in a scenario where the parties arrive in an online fashion, and there is no a-priory bound on the number of parties. An important complexity measure of a secret sharing scheme is the share size, which is the maximum number of bits that a party may receive as a share. While there has been a significant progress in recent years, the best constructions for both secret sharing and evolving secret sharing schemes have a share size that is exponential in the number of parties. On the other hand, the best lower bound, by Csirmaz [Eurocrypt ’95], is sub-linear.

In this work, we give a tight lower bound on the share size of evolving secret sharing schemes. Specifically, we show that the sub-linear lower bound of Csirmaz implies an exponential lower bound on evolving secret sharing.


Paper:

TR23-013 | 7th February 2023 04:53

A Lower Bound on the Share Size in Evolving Secret Sharing





TR23-013
Authors: Noam Mazor
Publication: 19th February 2023 20:48
Downloads: 387
Keywords: 


Abstract:

Secret sharing schemes allow sharing a secret between a set of parties in a way that ensures that only authorized subsets of the parties learn the secret. Evolving secret sharing schemes (Komargodski, Naor, and Yogev [TCC ’16]) allow achieving this end in a scenario where the parties arrive in an online fashion, and there is no a-priory bound on the number of parties. An important complexity measure of a secret sharing scheme is the share size, which is the maximum number of bits that a party may receive as a share. While there has been a significant progress in recent years, the best constructions for both secret sharing and evolving secret sharing schemes have a share size that is exponential in the number of parties. On the other hand, the best lower bound, by Csirmaz [Eurocrypt ’95], is sub-linear.

In this work, we give a tight lower bound on the share size of evolving secret sharing schemes. Specifically, we show that the sub-linear lower bound of Csirmaz implies an exponential lower bound on evolving secret sharing.



ISSN 1433-8092 | Imprint