The low-degree method postulates that no efficient algorithm outperforms low-degree polynomials in certain hypothesis-testing tasks. It has been used to understand computational indistinguishability in high-dimensional statistics.
We explore the use of the low-degree method in the context of cryptography. To this end, we apply it in the design and analysis of a new public-key encryption scheme whose security is based on Goldreich's pseudorandom generator. The scheme is a combination of two proposals of Applebaum, Barak, and Wigderson, and inherits desirable features from both.