Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #5 to TR24-077 | 23rd September 2024 16:35

Worst-Case to Average-Case Hardness of LWE: An Alternative Perspective

RSS-Feed




Revision #5
Authors: Divesh Aggarwal, JinMing Leong, Alexandra Veliche
Accepted on: 23rd September 2024 16:35
Downloads: 40
Keywords: 


Abstract:

In this work, we study the worst-case to average-case hardness of the Learning with Errors problem (LWE) under an alternative measure of hardness - the maximum success probability achievable by a probabilistic polynomial-time (PPT) algorithm. Previous works by Regev (STOC 2005), Peikert (STOC 2009), and Brakerski, Peikert, Langlois, Regev, Stehle (STOC 2013) give worst-case to average-case reductions from lattice problems to LWE, specifically from the approximate decision variant of the Shortest Vector Problem (GapSVP) and the Bounded Distance Decoding (BDD) problem. These reductions, however, are lossy in the sense that even the strongest assumption on the worst-case hardness of GapSVP or BDD implies only mild hardness of LWE. Our alternative perspective gives a much tighter reduction and strongly relates the hardness of LWE to that of BDD. In particular, we show that under a reasonable assumption about the success probability of solving BDD via a PPT algorithm, we obtain a nearly tight lower bound on the highest possible success probability for solving LWE via a PPT algorithm. Furthermore, we show a tight relationship between the best achievable success probability by any PPT algorithm for decision-LWE to that of search-LWE. Our results not only refine our understanding of the computational complexity of LWE, but also provide a useful framework for analyzing the practical security implications.



Changes to previous version:

Fixed some typos and added some references and clarifying remarks.


Revision #4 to TR24-077 | 26th June 2024 19:34

Worst-Case to Average-Case Hardness of LWE: An Alternative Perspective





Revision #4
Authors: Divesh Aggarwal, JinMing Leong, Alexandra Veliche
Accepted on: 26th June 2024 19:34
Downloads: 74
Keywords: 


Abstract:

In this work, we study the worst-case to average-case hardness of the Learning with Errors problem (LWE) under an alternative measure of hardness - the maximum success probability achievable by a probabilistic polynomial-time (PPT) algorithm. Previous works by Regev (STOC 2005), Peikert (STOC 2009), and Brakerski, Peikert, Langlois, Regev, Stehle (STOC 2013) give worst-case to average-case reductions from lattice problems to LWE, specifically from the approximate decision variant of the Shortest Vector Problem (GapSVP) and the Bounded Distance Decoding (BDD) problem. These reductions, however, are lossy in the sense that even the strongest assumption on the worst-case hardness of GapSVP or BDD implies only mild hardness of LWE. Our alternative perspective gives a much tighter reduction and strongly relates the hardness of LWE to that of BDD. In particular, we show that under a reasonable assumption about the success probability of solving BDD via a PPT algorithm, we obtain a nearly tight lower bound on the highest possible success probability for solving LWE via a PPT algorithm. Furthermore, we show a tight relationship between the best achievable success probability by any PPT algorithm for decision-LWE to that of search-LWE. Our results not only refine our understanding of the computational complexity of LWE, but also provide a useful framework for analyzing the practical security implications.



Changes to previous version:

Fixed some typos. Expanded Section 3.3. to include details of our application of results from [BLP+,2013]. Updated Theorem 3, the formal statement of our first main result.


Revision #3 to TR24-077 | 26th June 2024 19:34

Worst-Case to Average-Case Hardness of LWE: An Alternative Perspective





Revision #3
Authors: Divesh Aggarwal, JinMing Leong, Alexandra Veliche
Accepted on: 26th June 2024 19:34
Downloads: 64
Keywords: 


Abstract:

In this work, we study the worst-case to average-case hardness of the Learning with Errors problem (LWE) under an alternative measure of hardness - the maximum success probability achievable by a probabilistic polynomial-time (PPT) algorithm. Previous works by Regev (STOC 2005), Peikert (STOC 2009), and Brakerski, Peikert, Langlois, Regev, Stehle (STOC 2013) give worst-case to average-case reductions from lattice problems to LWE, specifically from the approximate decision variant of the Shortest Vector Problem (GapSVP) and the Bounded Distance Decoding (BDD) problem. These reductions, however, are lossy in the sense that even the strongest assumption on the worst-case hardness of GapSVP or BDD implies only mild hardness of LWE. Our alternative perspective gives a much tighter reduction and strongly relates the hardness of LWE to that of BDD. In particular, we show that under a reasonable assumption about the success probability of solving BDD via a PPT algorithm, we obtain a nearly tight lower bound on the highest possible success probability for solving LWE via a PPT algorithm. Furthermore, we show a tight relationship between the best achievable success probability by any PPT algorithm for decision-LWE to that of search-LWE. Our results not only refine our understanding of the computational complexity of LWE, but also provide a useful framework for analyzing the practical security implications.



Changes to previous version:

Fixed some typos. Expanded Section 3.3. to include details of our application of results from [BLP+,2013]. Updated Theorem 3, the formal statement of our first main result.


Revision #2 to TR24-077 | 18th May 2024 05:51

Worst-Case to Average-Case Hardness of LWE: An Alternative Perspective





Revision #2
Authors: Divesh Aggarwal, JinMing Leong, Alexandra Veliche
Accepted on: 18th May 2024 05:51
Downloads: 115
Keywords: 


Abstract:

In this work, we study the worst-case to average-case hardness of the Learning with Errors problem (LWE) under an alternative measure of hardness - the maximum success probability achievable by a probabilistic polynomial-time (PPT) algorithm. Previous works by Regev (STOC 2005), Peikert (STOC 2009), and Brakerski, Peikert, Langlois, Regev, Stehle (STOC 2013) give worst-case to average-case reductions from lattice problems to LWE, specifically from the approximate decision variant of the Shortest Vector Problem (GapSVP) and the Bounded Distance Decoding (BDD) problem. These reductions, however, are lossy in the sense that even the strongest assumption on the worst-case hardness of GapSVP or BDD implies only mild hardness of LWE. Our alternative perspective gives a much tighter reduction and strongly relates the hardness of LWE to that of BDD. In particular, we show that under a reasonable assumption about the success probability of solving BDD via a PPT algorithm, we obtain a nearly tight lower bound on the highest possible success probability for solving LWE via a PPT algorithm. Furthermore, we show a tight relationship between the best achievable success probability by any PPT algorithm for decision-LWE to that of search-LWE. Our results not only refine our understanding of the computational complexity of LWE, but also provide a useful framework for analyzing the practical security implications.


Revision #1 to TR24-077 | 22nd April 2024 20:43

Worst-Case to Average-Case Hardness of LWE: A Simple and Practical Perspective





Revision #1
Authors: Divesh Aggarwal, JinMing Leong, Alexandra Veliche
Accepted on: 22nd April 2024 20:44
Downloads: 282
Keywords: 


Abstract:

In this work, we study the worst-case to average-case hardness of the Learning with Errors problem (LWE) under an alternative measure of hardness - the maximum success probability achievable by a probabilistic polynomial-time (PPT) algorithm. Previous works by Regev (STOC 2005), Peikert (STOC 2009), and Brakerski, Peikert, Langlois, Regev, Stehle (STOC 2013) give worst-case to average-case reductions from lattice problems to LWE, specifically from the approximate decision variant of the Shortest Vector Problem (GapSVP) and the Bounded Distance Decoding (BDD) problem. These reductions, however, are lossy in the sense that even the strongest assumption on the worst-case hardness of GapSVP or BDD implies only mild hardness of LWE. Our alternative perspective gives a much tighter reduction and strongly relates the hardness of LWE to that of BDD. In particular, we show that under a reasonable assumption about the success probability of solving BDD via a PPT algorithm, we obtain a nearly tight lower bound on the highest possible success probability for solving LWE via a PPT algorithm. Furthermore, we show a tight relationship between the best achievable success probability by any PPT algorithm for decision-LWE to that of search-LWE. Our results not only refine our understanding of the computational complexity of LWE, but also provide a useful framework for analyzing the practical security implications.


Paper:

TR24-077 | 19th April 2024 04:40

Worst-Case to Average-Case Hardness of LWE: A Simple and Practical Perspective





TR24-077
Authors: Divesh Aggarwal, JinMing Leong, Alexandra Veliche
Publication: 19th April 2024 10:44
Downloads: 489
Keywords: 


Abstract:

In this work, we study the worst-case to average-case hardness of the Learning with Errors problem (LWE) under an alternative measure of hardness - the maximum success probability achievable by a probabilistic polynomial-time (PPT) algorithm. Previous works by Regev (STOC 2005), Peikert (STOC 2009), and Brakerski, Peikert, Langlois, Regev, Stehle (STOC 2013) give worst-case to average-case reductions from lattice problems to LWE, specifically from the approximate decision variant of the Shortest Vector Problem (GapSVP) and the Bounded Distance Decoding (BDD) problem. These reductions, however, are lossy in the sense that even the strongest assumption on the worst-case hardness of GapSVP or BDD implies only mild hardness of LWE. Our alternative perspective gives a much tighter reduction and strongly relates the hardness of LWE to that of BDD. In particular, we show that under a reasonable assumption about the success probability of solving BDD via a PPT algorithm, we obtain a nearly tight lower bound on the highest possible success probability for solving LWE via a PPT algorithm. Furthermore, we show a tight relationship between the best achievable success probability by any PPT algorithm for decision-LWE to that of search-LWE. Our results not only refine our understanding of the computational complexity of LWE, but also provide a useful framework for analyzing the practical security implications.



ISSN 1433-8092 | Imprint