In this thesis we investigate the power of weak fragments of arithmetic. We do this from a model theoretic and also from a proof complexity perspective. From a model theoretic point of view it seems reasonable that a small initial segment of any model of bounded arithmetic is a model of a stronger theory. We exemplify this by showing that any polylogarithmic cut of a model of V^0 is actually a model of VNC. Exploiting a well-known connection between frag- ments of bounded arithmetic and provability in various proof systems, we show a separation result between Resolution and the TC^0-Frege proof system on random 3CNF within a certain clause-to-variable ratio. Combining both results we can also conclude a weaker separation result for Resolution and bounded depth Frege systems.
1 Preliminaries 6 1.1 Proof Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1 Some Important Proof Systems and Their Interrelation . . 7 1.2 Bounded Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 The Theory V0 and its Extensions . . . . . . . . . . . . . . . . . 15 1.3.1 The Theory VTC0 . . . . . . . . . . . . . . . . . . . . . . 18 1.3.2 The Theories VNCk and VNC . . . . . . . . . . . . . . . 20 1.3.3 Relation between Arithmetic Theories and Proof Systems . 22 2 Refutations of Random 3CNF in TC0-Frege 26 2.0.4 Step I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.0.5 Step II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Cuts of Models of V0 32 3.1 Polylogarithmic Cuts and VNC1 . . . . . . . . . . . . . . . . . . 33 3.2 Polylogarithmic Cuts and VNC . . . . . . . . . . . . . . . . . . . 34 4 Computations in VTC0 37 4.1 DH and extensions of VTC0 . . . . . . . . . . . . . . . . . . . . . 38 4.1.1 Proving EXP_{G;P} . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Conclusion 45 A Short Refutations for Random 3CNF 1 A.0.2 Background in proof complexity . . . . . . . . . . . . . . . 1 A.0.3 Our result . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 A.0.4 Relations to previous works . . . . . . . . . . . . . . . . . 5 A.0.5 The structure of the argument . . . . . . . . . . . . . . . . 6 A.0.6 Overview of the Proof . . . . . . . . . . . . . . . . . . . . 8 A.0.7 Organization of the paper . . . . . . . . . . . . . . . . . . 12 A.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 A.1.1 Miscellaneous linear algebra notations . . . . . . . . . . . 13 A.1.2 Propositional proofs and TC0-Frege systems . . . . . . . . 13 A.2 Theories of Bounded Arithmetic . . . . . . . . . . . . . . . . . . . 16 A.2.1 The theory V0 . . . . . . . . . . . . . . . . . . . . . . . . 17 A.2.2 The theory VTC0 . . . . . . . . . . . . . . . . . . . . . . 24 A.3 Feige-Kim-Ofek Witnesses and the Main Formula . . . . . . . . . 36 A.4 Proof of the Main Formula . . . . . . . . . . . . . . . . . . . . . . 39 A.4.1 Formulas satisfied as 3XOR . . . . . . . . . . . . . . . . . 44 A.4.2 Bounding the number of NAE satisfying assignments . . . 46 A.5 The Spectral Bound . . . . . . . . . . . . . . . . . . . . . . . . . 48 A.5.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 A.5.2 Rational approximations of Reals, vectors and matrices . . 49 A.5.3 The predicate EigValBound . . . . . . . . . . . . . . . . 50 A.5.4 Certifying the spectral inequality . . . . . . . . . . . . . . 53 A.6 Wrapping-up the Proof: TC0-Frege Refutations of Random 3CNF 57 A.6.1 Converting the main formula into a Sigma^B_0 formula . . . . . 57 A.6.2 Propositional proofs . . . . . . . . . . . . . . . . . . . . . 58 A.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 B Polylogarithmic Cuts of Models of V^0 62 B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 B.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 B.2.1 Elements of Proof Complexity . . . . . . . . . . . . . . . . 64 B.2.2 The theory V0 . . . . . . . . . . . . . . . . . . . . . . . . 65 B.2.3 Extensions of V0 . . . . . . . . . . . . . . . . . . . . . . . 68 B.2.4 Relation between Arithmetic Theories and Proof Systems . 68 B.3 Polylogarithmic Cuts of Models of V^0 are Models of VNC^1. . . . 70 B.4 Implications for Proof Complexity . . . . . . . . . . . . . . . . . . 75 B.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . 75 B.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . 76 C Necessary Background 77 C.1 Logical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 77 C.1.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . 78 C.1.2 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . 82 C.2 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 85 C.2.1 Circuit Complexity . . . . . . . . . . . . . . . . . . . . . . 89