Motivated in part by applications in lattice-based cryptography, we initiate the study of the size of linear threshold (`$t$-out-of-$n$') secret-sharing where the linear reconstruction function is restricted to coefficients in $\{0,1\}$. We prove upper and lower bounds on the share size of such schemes. One ramification of our results is ... more >>>
Starting with the two standard model of randomized communication complexity, we study the communication complexity of functions when the protocol has access to a defective source of randomness.
Specifically, we consider both the public-randomness and private-randomness cases, while replacing the commonly postulated perfect randomness with distributions over $\ell$ bit ...
more >>>
We present the first explicit construction of a non-malleable code that can handle tampering functions that are bounded-degree polynomials.
Prior to our work, this was only known for degree-1 polynomials (affine tampering functions), due to Chattopadhyay and Li (STOC 2017). As a direct corollary, we obtain an explicit non-malleable ... more >>>
We initiate a comprehensive study of the question of randomness extractions from two somewhat dependent sources of defective randomness.
Specifically, we present three natural models, which are based on different natural perspectives on the notion of bounded dependency between a pair of distributions.
Going from the more restricted model ...
more >>>
We prove an $\Omega(d \lg n/ (\lg\lg n)^2)$ lower bound on the dynamic cell-probe complexity of statistically $\mathit{oblivious}$ approximate-near-neighbor search (ANN) over the $d$-dimensional Hamming cube. For the natural setting of $d = \Theta(\log n)$, our result implies an $\tilde{\Omega}(\lg^2 n)$ lower bound, which is a quadratic improvement over the ... more >>>
We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e.~$\mathsf{AC^0}$ tampering functions), our codes have codeword length $n = k^{1+o(1)}$ for a $k$-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay ... more >>>
The study of monotonicity and negation complexity for Boolean functions has been prevalent in complexity theory as well as in computational learning theory, but little attention has been given to it in the cryptographic context. Recently, Goldreich and Izsak (2012) have initiated a study of whether cryptographic primitives can be ... more >>>
Secure computation is one of the most fundamental cryptographic tasks.
It is known that all functions can be computed securely in the
information theoretic setting, given access to a black box for some
complete function such as AND. However, without such a black box, not
all functions can be securely ...
more >>>