Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Tal Malkin:

TR20-054 | 22nd April 2020
Marshall Ball, Oded Goldreich, Tal Malkin

Communication Complexity with Defective Randomness

Revisions: 2

Starting with the two standard model of randomized communication complexity, we study the communication complexity of functions when the protocol has access to a defective source of randomness.
Specifically, we consider both the public-randomness and private-randomness cases, while replacing the commonly postulated perfect randomness with distributions over $\ell$ bit ... more >>>

TR20-023 | 10th February 2020
Marshall Ball, Eshan Chattopadhyay, Jyun-Jie Liao, Tal Malkin, Li-Yang Tan

Non-Malleability against Polynomial Tampering

Revisions: 1

We present the first explicit construction of a non-malleable code that can handle tampering functions that are bounded-degree polynomials.

Prior to our work, this was only known for degree-1 polynomials (affine tampering functions), due to Chattopadhyay and Li (STOC 2017). As a direct corollary, we obtain an explicit non-malleable ... more >>>

TR19-183 | 21st December 2019
Marshall Ball, Oded Goldreich, Tal Malkin

Randomness Extraction from Somewhat Dependent Sources

Revisions: 1

We initiate a comprehensive study of the question of randomness extractions from two somewhat dependent sources of defective randomness.
Specifically, we present three natural models, which are based on different natural perspectives on the notion of bounded dependency between a pair of distributions.
Going from the more restricted model ... more >>>

TR19-055 | 9th April 2019
Kasper Green Larsen, Tal Malkin, Omri Weinstein, Kevin Yeo

Lower Bounds for Oblivious Near-Neighbor Search

We prove an $\Omega(d \lg n/ (\lg\lg n)^2)$ lower bound on the dynamic cell-probe complexity of statistically $\mathit{oblivious}$ approximate-near-neighbor search (ANN) over the $d$-dimensional Hamming cube. For the natural setting of $d = \Theta(\log n)$, our result implies an $\tilde{\Omega}(\lg^2 n)$ lower bound, which is a quadratic improvement over the ... more >>>

TR18-040 | 21st February 2018
Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, Li-Yang Tan

Non-Malleable Codes for Small-Depth Circuits

We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e.~$\mathsf{AC^0}$ tampering functions), our codes have codeword length $n = k^{1+o(1)}$ for a $k$-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay ... more >>>

TR15-008 | 14th January 2015
Igor Carboni Oliveira, Siyao Guo, Tal Malkin, Alon Rosen

The Power of Negations in Cryptography

Revisions: 1

The study of monotonicity and negation complexity for Boolean functions has been prevalent in complexity theory as well as in computational learning theory, but little attention has been given to it in the cryptographic context. Recently, Goldreich and Izsak (2012) have initiated a study of whether cryptographic primitives can be ... more >>>

TR03-086 | 1st December 2003
Amos Beimel, Tal Malkin

A Quantitative Approach to Reductions in Secure Computation

Secure computation is one of the most fundamental cryptographic tasks.
It is known that all functions can be computed securely in the
information theoretic setting, given access to a black box for some
complete function such as AND. However, without such a black box, not
all functions can be securely ... more >>>

ISSN 1433-8092 | Imprint