A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is weighted symmetric if there exist a function $g: \mathbb{Z} \to \{0,1\}$ and integers $w_0, w_1, \ldots, w_n$ such that $f(x_1,\ldots,x_n) = g(w_0+\sum_{i=1}^n w_i x_i)$ holds.
In this paper, we present algorithms for the circuit satisfiability problem of bounded depth circuits with AND, ... more >>>
In this paper, we present a moderately exponential time algorithm for the circuit satisfiability problem of
depth-2 unbounded-fan-in circuits with an arbitrary symmetric gate at the top and AND gates at the bottom.
As a special case, we obtain an algorithm for the maximum satisfiability problem that runs in ...
more >>>
We present a moderately exponential time algorithm for the satisfiability of Boolean formulas over the full binary basis.
For formulas of size at most $cn$, our algorithm runs in time $2^{(1-\mu_c)n}$ for some constant $\mu_c>0$.
As a byproduct of the running time analysis of our algorithm,
we get strong ...
more >>>