We present a moderately exponential time algorithm for the satisfiability of Boolean formulas over the full binary basis.
For formulas of size at most $cn$, our algorithm runs in time $2^{(1-\mu_c)n}$ for some constant $\mu_c>0$.
As a byproduct of the running time analysis of our algorithm,
we get strong average-case hardness of affine extractors for linear-sized formulas over the full binary basis.