We consider depth 2 unbounded fan-in circuits with symmetric and linear threshold gates. We present a deterministic algorithm that, given such a circuit with $n$ variables and $m$ gates, counts the number of satisfying assignments in time $2^{n-\Omega\left(\left(\frac{n}{\sqrt{m} \cdot \poly(\log n)}\right)^a\right)}$ for some constant $a>0$. Our algorithm runs in time ... more >>>
A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is weighted symmetric if there exist a function $g: \mathbb{Z} \to \{0,1\}$ and integers $w_0, w_1, \ldots, w_n$ such that $f(x_1,\ldots,x_n) = g(w_0+\sum_{i=1}^n w_i x_i)$ holds.
In this paper, we present algorithms for the circuit satisfiability problem of bounded depth circuits with AND, ... more >>>
Most of the known lower bounds for binary Boolean circuits with unrestricted depth are proved by the gate elimination method. The most efficient known algorithms for the #SAT problem on binary Boolean circuits use similar case analyses to the ones in gate elimination. Chen and Kabanets recently showed that the ... more >>>
In this paper, we present a moderately exponential time algorithm for the circuit satisfiability problem of
depth-2 unbounded-fan-in circuits with an arbitrary symmetric gate at the top and AND gates at the bottom.
As a special case, we obtain an algorithm for the maximum satisfiability problem that runs in ...
more >>>
A temporal constraint language $\Gamma$ is a set of relations with first-order definitions in $({\mathbb{Q}}; <)$. Let CSP($\Gamma$) denote the set of constraint satisfaction problem instances with relations from $\Gamma$. CSP($\Gamma$) admits robust approximation if, for any $\varepsilon \geq 0$, given a $(1-\varepsilon)$-satisfiable instance of CSP($\Gamma$), we can compute an ... more >>>
We present a moderately exponential time algorithm for the satisfiability of Boolean formulas over the full binary basis.
For formulas of size at most $cn$, our algorithm runs in time $2^{(1-\mu_c)n}$ for some constant $\mu_c>0$.
As a byproduct of the running time analysis of our algorithm,
we get strong ...
more >>>
Long Code testing is a fundamental problem in the area of property
testing and hardness of approximation.
Long Code is a function of the form $f(x)=x_i$ for some index $i$.
In the Long Code testing, the problem is, given oracle access to a
collection of Boolean functions, to decide whether ...
more >>>
The planar Hajos calculus is the Hajos calculus with the restriction that all the graphs that appear in the construction (including a final graph) must be planar. We prove that the planar Hajos calculus is polynomially bounded iff the HajĀLos calculus is polynomially bounded.
more >>>P. Gopalan, P. G. Kolaitis, E. N. Maneva and C. H. Papadimitriou
studied in [Gopalan et al., ICALP2006] connectivity properties of the
solution-space of Boolean formulas, and investigated complexity issues
on connectivity problems in Schaefer's framework [Schaefer, STOC1978].
A set S of logical relations is Schaefer if all relations in ...
more >>>
This paper presents a new upper bound for the
$k$-satisfiability problem. For small $k$'s, especially for $k=3$,
there have been a lot of algorithms which run significantly faster
than the trivial $2^n$ bound. The following list summarizes those
algorithms where a constant $c$ means that the algorithm runs in time
more >>>