We prove that polynomial calculus (and hence also Nullstellensatz) over any field requires linear degree to refute that sparse random regular graphs, as well as sparse Erd?s-Rényi random graphs, are 3-colourable. Using the known relation between size and degree for polynomial calculus proofs, this implies strongly exponential lower bounds on ... more >>>
We exhibit supercritical trade-off for monotone circuits, showing that there are functions computable by small circuits for which any circuit must have depth super-linear or even super-polynomial in the number of variables, far exceeding the linear worst-case upper bound. We obtain similar trade-offs in proof complexity, where we establish the ... more >>>