We exhibit supercritical trade-off for monotone circuits, showing that there are functions computable by small circuits for which any circuit must have depth super-linear or even super-polynomial in the number of variables, far exceeding the linear worst-case upper bound. We obtain similar trade-offs in proof complexity, where we establish the first size-depth trade-offs for cutting planes and resolution that are truly supercritical, i.e., in terms of formula size rather than number of variables, and we also show supercritical trade-offs between width and size for treelike resolution.
Our results build on a new supercritical width-depth trade-off for resolution, obtained by refining and strengthening the compression scheme for the Cop-Robber game in [Grohe, Lichter, Neuen & Schweitzer 2023]. This yields robust supercritical trade-offs for dimension versus iteration number in the Weisfeiler-Leman algorithm, which also translate into trade-offs between number of variables and quantifier depth in first-order logic. Our other results follow from improved lifting theorems that might be of independent interest.