Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > RESOLUTION:
Reports tagged with Resolution:
TR97-007 | 21st February 1997
Stasys Jukna

Exponential Lower Bounds for Semantic Resolution


In a semantic resolution proof we operate with clauses only
but allow {\em arbitrary} rules of inference:

C_1 C_2 ... C_m
__________________
C

Consistency is the only requirement. We prove a very simple
exponential lower bound for the size ... more >>>


TR98-035 | 8th May 1998
Maria Luisa Bonet, Juan Luis Esteban, Jan Johannsen

Exponential Separations between Restricted Resolution and Cutting Planes Proof Systems

We prove an exponential lower bound for tree-like Cutting Planes
refutations of a set of clauses which has polynomial size resolution
refutations. This implies an exponential separation between tree-like
and dag-like proofs for both Cutting Planes and resolution; in both
cases only superpolynomial separations were known before.
In order to ... more >>>


TR99-022 | 14th June 1999
Eli Ben-Sasson, Avi Wigderson

Short Proofs are Narrow - Resolution made Simple

The width of a Resolution proof is defined to be the maximal number of
literals in any clause of the proof. In this paper we relate proof width
to proof length (=size), in both general Resolution, and its tree-like
variant. The following consequences of these relations reveal width as ... more >>>


TR99-040 | 20th October 1999
Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, Avi Wigderson

Space Complexity in Propositional Calculus

We study space complexity in the framework of
propositional proofs. We consider a natural model analogous to
Turing machines with a read-only input tape, and such
popular propositional proof systems as Resolution, Polynomial
Calculus and Frege systems. We propose two different space measures,
corresponding to the maximal number of bits, ... more >>>


TR00-005 | 17th January 2000
Eli Ben-Sasson, Russell Impagliazzo, Avi Wigderson

Near-Optimal Separation of Treelike and General Resolution

We present the best known separation
between tree-like and general resolution, improving
on the recent $\exp(n^\epsilon)$ separation of \cite{BEGJ98}.
This is done by constructing a natural family of contradictions, of
size $n$, that have $O(n)$-size resolution
refutations, but only $\exp (\Omega(n/\log n))$-size tree-like refutations.
This result ... more >>>


TR00-018 | 16th February 2000
Oliver Kullmann

An application of matroid theory to the SAT problem

A basic property of minimally unsatisfiable clause-sets F is that
c(F) >= n(F) + 1 holds, where c(F) is the number of clauses, and
n(F) the number of variables. Let MUSAT(k) be the class of minimally
unsatisfiable clause-sets F with c(F) <= n(F) + k.

Poly-time decision algorithms are known ... more >>>


TR00-023 | 11th May 2000
Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, Avi Wigderson

Pseudorandom Generators in Propositional Proof Complexity

We call a pseudorandom generator $G_n:\{0,1\}^n\to \{0,1\}^m$ {\em
hard} for a propositional proof system $P$ if $P$ can not efficiently
prove the (properly encoded) statement $G_n(x_1,\ldots,x_n)\neq b$ for
{\em any} string $b\in\{0,1\}^m$. We consider a variety of
``combinatorial'' pseudorandom generators inspired by the
Nisan-Wigderson generator on the one hand, and ... more >>>


TR01-031 | 5th April 2001
Eli Ben-Sasson, Nicola Galesi

Space Complexity of Random Formulae in Resolution

We study the space complexity of refuting unsatisfiable random $k$-CNFs in
the Resolution proof system. We prove that for any large enough $\Delta$,
with high probability a random $k$-CNF over $n$ variables and $\Delta n$
clauses requires resolution clause space of
$\Omega(n \cdot \Delta^{-\frac{1+\epsilon}{k-2-\epsilon}})$,
for any $0<\epsilon<1/2$. For constant $\Delta$, ... more >>>


TR01-055 | 26th July 2001
Alexander Razborov

Improved Resolution Lower Bounds for the Weak Pigeonhole Principle

Recently, Raz established exponential lower bounds on the size
of resolution proofs of the weak pigeonhole principle. We give another
proof of this result which leads to better numerical bounds. Specifically,
we show that every resolution proof of $PHP^m_n$ must have size
$\exp\of{\Omega(n/\log m)^{1/2}}$ which implies an
$\exp\of{\Omega(n^{1/3})}$ bound when ... more >>>


TR01-056 | 6th August 2001
Michael Alekhnovich, Jan Johannsen, Alasdair Urquhart

An Exponential Separation between Regular and General Resolution

This paper gives two distinct proofs of an exponential separation
between regular resolution and unrestricted resolution.
The previous best known separation between these systems was
quasi-polynomial.

more >>>

TR01-074 | 12th October 2001
Joshua Buresh-Oppenheim, David Mitchell

Linear and Negative Resolution are Weaker than Resolution

Comments: 1

We prove exponential separations between the sizes of
particular refutations in negative, respectively linear, resolution and
general resolution. Only a superpolynomial separation between negative
and general resolution was previously known. Our examples show that there
is no strong relationship between the size and width of refutations in
negative and ... more >>>


TR01-075 | 2nd November 2001
Alexander Razborov

Resolution Lower Bounds for the Weak Functional Pigeonhole Principle

We show that every resolution proof of the {\em functional} version
$FPHP^m_n$ of the pigeonhole principle (in which one pigeon may not split
between several holes) must have size $\exp\of{\Omega\of{\frac n{(\log
m)^2}}}$. This implies an $\exp\of{\Omega(n^{1/3})}$ bound when the number
of pigeons $m$ is arbitrary.

more >>>

TR02-003 | 24th December 2001
Eli Ben-Sasson, Yonatan Bilu

A Gap in Average Proof Complexity

We present the first example of a natural distribution on instances
of an NP-complete problem, with the following properties.
With high probability a random formula from this
distribution (a) is unsatisfiable,
(b) has a short proof that can be found easily, and (c) does not have a short
(general) resolution ... more >>>


TR02-010 | 21st January 2002
Albert Atserias, Maria Luisa Bonet

On the Automatizability of Resolution and Related Propositional Proof Systems

Having good algorithms to verify tautologies as efficiently as possible
is of prime interest in different fields of computer science.
In this paper we present an algorithm for finding Resolution refutations
based on finding tree-like Res(k) refutations. The algorithm is based on
the one of Beame and Pitassi \cite{BP96} ... more >>>


TR03-003 | 19th December 2002
Fahiem Bacchus, Shannon Dalmao

DPLL with Caching: A new algorithm for #SAT and Bayesian Inference

Bayesian inference and counting satisfying assignments are important
problems with numerous applications in probabilistic reasoning. In this
paper, we show that plain old DPLL equipped with memoization can solve
both of these problems with time complexity that is at least as
good as all known algorithms. Furthermore, DPLL with memoization
more >>>


TR03-044 | 12th May 2003
Juan Luis Esteban, Jacobo Toran

A Combinatorial Characterization of Treelike Resolution Space

We show that the Player-Adversary game from a paper
by Pudlak and Impagliazzo played over
CNF propositional formulas gives
an exact characterization of the space needed
in treelike resolution refutations. This
characterization is purely combinatorial
and independent of the notion of resolution.
We use this characterization to give ... more >>>


TR04-012 | 19th December 2003
Paul Beame, Joseph Culberson, David Mitchell, Cristopher Moore

The Resolution Complexity of Random Graph $k$-Colorability

We consider the resolution proof complexity of propositional formulas which encode random instances of graph $k$-colorability. We obtain a tradeoff between the graph density and the resolution proof complexity.
For random graphs with linearly many edges we obtain linear-exponential lower bounds on the length of resolution refutations. For any $\epsilon>0$, ... more >>>


TR05-066 | 4th June 2005
Jakob Nordström

Narrow Proofs May Be Spacious: Separating Space and Width in Resolution

Revisions: 2 , Comments: 1

The width of a resolution proof is the maximal number of literals in any clause of the proof. The space of a proof is the maximal number of memory cells used if the proof is only allowed to resolve on clauses kept in memory. Both of these measures have previously ... more >>>


TR07-041 | 20th April 2007
Nicola Galesi, Massimo Lauria

Extending Polynomial Calculus to $k$-DNF Resolution

Revisions: 1

We introduce an algebraic proof system Pcrk, which combines together {\em Polynomial Calculus} (Pc) and {\em $k$-DNF Resolution} (Resk).
This is a natural generalization to Resk of the well-known {\em Polynomial Calculus with Resolution} (Pcr) system which combines together Pc and Resolution.

We study the complexity of proofs in such ... more >>>


TR07-046 | 23rd April 2007
Philipp Hertel

An Exponential Time/Space Speedup For Resolution

Comments: 1

Satisfiability algorithms have become one of the most practical and successful approaches for solving a variety of real-world problems, including hardware verification, experimental design, planning and diagnosis problems. The main reason for the success is due to highly optimized algorithms for SAT based on resolution. The most successful of these ... more >>>


TR07-078 | 11th August 2007
Ran Raz, Iddo Tzameret

Resolution over Linear Equations and Multilinear Proofs

We develop and study the complexity of propositional proof systems of varying strength extending resolution by allowing it to operate with disjunctions of linear equations instead of clauses. We demonstrate polynomial-size refutations for hard tautologies like the pigeonhole principle, Tseitin graph tautologies and the clique-coloring tautologies in these proof systems. ... more >>>


TR07-114 | 28th September 2007
Jakob Nordström

A Simplified Way of Proving Trade-off Results for Resolution

We present a greatly simplified proof of the length-space
trade-off result for resolution in Hertel and Pitassi (2007), and
also prove a couple of other theorems in the same vein. We point
out two important ingredients needed for our proofs to work, and
discuss possible conclusions to be drawn regarding ... more >>>


TR07-126 | 5th November 2007
Nathan Segerlind

On the relative efficiency of resolution-like proofs and ordered binary decision diagram proofs

We show that tree-like OBDD proofs of unsatisfiability require an exponential increase ($s \mapsto 2^{s^{\Omega(1)}}$) in proof size to simulate unrestricted resolution, and that unrestricted OBDD proofs of unsatisfiability require an almost-exponential increase ($s \mapsto 2^{ 2^{\left( \log s \right)^{\Omega(1)}}}$) in proof size to simulate $\Res{O(\log n)}$. The ``OBDD proof ... more >>>


TR08-026 | 28th February 2008
Jakob Nordström, Johan Håstad

Towards an Optimal Separation of Space and Length in Resolution

Most state-of-the-art satisfiability algorithms today are variants of
the DPLL procedure augmented with clause learning. The main bottleneck
for such algorithms, other than the obvious one of time, is the amount
of memory used. In the field of proof complexity, the resources of
time and memory correspond to the length ... more >>>


TR09-002 | 23rd November 2008
Eli Ben-Sasson, Jakob Nordström

Short Proofs May Be Spacious: An Optimal Separation of Space and Length in Resolution

A number of works have looked at the relationship between length and space of resolution proofs. A notorious question has been whether the existence of a short proof implies the existence of a proof that can be verified using limited space.

In this paper we resolve the question by answering ... more >>>


TR09-003 | 6th January 2009
Alex Hertel, Alasdair Urquhart

Comments on ECCC Report TR06-133: The Resolution Width Problem is EXPTIME-Complete

We discovered a serious error in one of our previous submissions to ECCC and wish to make sure that this mistake is publicly known.

The main argument of the report TR06-133 is in error. The paper claims to prove the result of the title by reduction from the (Exists,k)-pebble game, ... more >>>


TR09-034 | 25th March 2009
Eli Ben-Sasson, Jakob Nordström

Understanding Space in Resolution: Optimal Lower Bounds and Exponential Trade-offs

Comments: 1

For current state-of-the-art satisfiability algorithms based on the
DPLL procedure and clause learning, the two main bottlenecks are the
amounts of time and memory used. Understanding time and memory
consumption, and how they are related to one another, is therefore a
question of considerable practical importance. In the field of ... more >>>


TR09-087 | 1st October 2009
Olga Tveretina, Carsten Sinz, Hans Zantema

Ordered Binary Decision Diagrams, Pigeonhole Formulas and Beyond

Groote and Zantema proved that a particular OBDD computation of the pigeonhole formula has an exponential
size and that limited OBDD derivations cannot simulate resolution polynomially. Here we show that any arbitrary OBDD Apply refutation of the pigeonhole formula has an exponential
size: we prove that the size of one ... more >>>


TR09-100 | 16th October 2009
Jakob Nordström, Alexander Razborov

On Minimal Unsatisfiability and Time-Space Trade-offs for $k$-DNF Resolution

In the context of proving lower bounds on proof space in $k$-DNF
resolution, [Ben-Sasson and Nordstr&ouml;m 2009] introduced the concept of
minimally unsatisfiable sets of $k$-DNF formulas and proved that a
minimally unsatisfiable $k$-DNF set with $m$ formulas can have at most
$O((mk)^{k+1})$ variables. They also gave an example of ... more >>>


TR10-045 | 15th March 2010
Jakob Nordström

On the Relative Strength of Pebbling and Resolution

Revisions: 1

The last decade has seen a revival of interest in pebble games in the
context of proof complexity. Pebbling has proven to be a useful tool
for studying resolution-based proof systems when comparing the
strength of different subsystems, showing bounds on proof space, and
establishing size-space trade-offs. The typical approach ... more >>>


TR10-059 | 8th April 2010
Olaf Beyersdorff, Nicola Galesi, Massimo Lauria

Hardness of Parameterized Resolution

Parameterized Resolution and, moreover, a general framework for parameterized proof complexity was introduced by Dantchev, Martin, and Szeider (FOCS'07). In that paper, Dantchev et al. show a complexity gap in tree-like Parameterized Resolution for propositional formulas arising from translations of first-order principles.
We broadly investigate Parameterized Resolution obtaining the following ... more >>>


TR10-068 | 15th April 2010
Shir Ben-Israel, Eli Ben-Sasson, David Karger

Breaking local symmetries can dramatically reduce the length of propositional refutations

This paper shows that the use of ``local symmetry breaking'' can dramatically reduce the length of propositional refutations. For each of the three propositional proof systems known as (i) treelike resolution, (ii) resolution, and (iii) k-DNF resolution, we describe families of unsatisfiable formulas in conjunctive normal form (CNF) that are ... more >>>


TR10-081 | 10th May 2010
Olaf Beyersdorff, Nicola Galesi, Massimo Lauria

A Lower Bound for the Pigeonhole Principle in Tree-like Resolution by Asymmetric Prover-Delayer Games

In this note we show that the asymmetric Prover-Delayer game developed by Beyersdorff, Galesi, and Lauria (ECCC TR10-059) for Parameterized Resolution is also applicable to other tree-like proof systems. In particular, we use this asymmetric Prover-Delayer game to show a lower bound of the form $2^{\Omega(n\log n)}$ for the pigeonhole ... more >>>


TR10-085 | 20th May 2010
Eli Ben-Sasson, Jan Johannsen

Lower bounds for width-restricted clause learning on small width formulas

It has been observed empirically that clause learning does not significantly improve the performance of a SAT solver when restricted
to learning clauses of small width only. This experience is supported by lower bound theorems. It is shown that lower bounds on the runtime of width-restricted clause learning follow from ... more >>>


TR10-125 | 11th August 2010
Eli Ben-Sasson, Jakob Nordström

Understanding Space in Proof Complexity: Separations and Trade-offs via Substitutions

For current state-of-the-art satisfiability algorithms based on the DPLL procedure and clause learning, the two main bottlenecks are the amounts of time and memory used. In the field of proof complexity, these resources correspond to the length and space of resolution proofs for formulas in conjunctive normal form (CNF). There ... more >>>


TR10-153 | 7th October 2010
Lorenzo Carlucci, Nicola Galesi, Massimo Lauria

Paris-Harrington tautologies

Revisions: 2

We initiate the study of the proof complexity of propositional encoding of (weak cases of) concrete independence results. In particular we study the proof complexity of Paris-Harrington's Large Ramsey Theorem. We prove a conditional lower bound in Resolution and a quasipolynomial upper bound in bounded-depth Frege.

more >>>

TR11-006 | 20th January 2011
Sebastian Müller, Iddo Tzameret

Average-Case Separation in Proof Complexity: Short Propositional Refutations for Random 3CNF Formulas

Revisions: 1

Separating different propositional proof systems---that is, demonstrating that one proof system cannot efficiently simulate another proof system---is one of the main goals of proof complexity. Nevertheless, all known separation results between non-abstract proof systems are for specific families of hard tautologies: for what we know, in the average case all ... more >>>


TR11-149 | 4th November 2011
Paul Beame, Chris Beck, Russell Impagliazzo

Time-Space Tradeoffs in Resolution: Superpolynomial Lower Bounds for Superlinear Space

We give the first time-space tradeoff lower bounds for Resolution proofs that apply to superlinear space. In particular, we show that there are formulas of size $N$ that have Resolution refutations of space and size each roughly $N^{\log_2 N}$ (and like all formulas have Resolution refutations of space $N$) for ... more >>>


TR11-162 | 7th December 2011
Pavel Pudlak

A lower bound on the size of resolution proofs of the Ramsey theorem

We prove an exponential lower bound on the lengths of resolution proofs of propositions expressing the finite Ramsey theorem for pairs.

more >>>

TR12-132 | 21st October 2012
Yuval Filmus, Massimo Lauria, Jakob Nordström, Noga Ron-Zewi, Neil Thapen

Space Complexity in Polynomial Calculus

During the last decade, an active line of research in proof complexity has been to study space complexity and time-space trade-offs for proofs. Besides being a natural complexity measure of intrinsic interest, space is also an important issue in SAT solving, and so research has mostly focused on weak systems ... more >>>


TR12-161 | 20th November 2012
Olaf Beyersdorff, Nicola Galesi, Massimo Lauria

A Characterization of Tree-Like Resolution Size

We explain an asymmetric Prover-Delayer game which precisely characterizes proof size in tree-like Resolution. This game was previously described in a parameterized complexity context to show lower bounds for parameterized formulas and for the classical pigeonhole principle. The main point of this note is to show that the asymmetric game ... more >>>


TR13-027 | 29th January 2013
Luke Friedman

A Framework for Proving Proof Complexity Lower Bounds on Random CNFs Using Encoding Techniques

Propositional proof complexity is an area of complexity theory that addresses the question of whether the class NP is closed under complement, and also provides a theoretical framework for studying practical applications such as SAT solving.
Some of the most well-studied contradictions are random $k$-CNF formulas where each clause of ... more >>>


TR13-038 | 13th March 2013
Massimo Lauria, Pavel Pudlak, Vojtech Rodl, Neil Thapen

The complexity of proving that a graph is Ramsey

Revisions: 1

We say that a graph with $n$ vertices is $c$-Ramsey if it does not contain either a clique or an independent set of size $c \log n$. We define a CNF formula which expresses this property for a graph $G$. We show a superpolynomial lower bound on the length of ... more >>>


TR13-149 | 28th October 2013
Albert Atserias, Neil Thapen

The Ordering Principle in a Fragment of Approximate Counting

The ordering principle states that every finite linear order has a least element. We show that, in the relativized setting, the surjective weak pigeonhole principle for polynomial time functions does not prove a Herbrandized version of the ordering principle over $\mathrm{T}^1_2$. This answers an open question raised in [Buss, Ko{\l}odziejczyk ... more >>>


TR14-036 | 8th March 2014
Mikolas Janota, Leroy Chew, Olaf Beyersdorff

On Unification of QBF Resolution-Based Calculi

Revisions: 1

Several calculi for quantified Boolean formulas (QBFs) exist, but
relations between them are not yet fully understood.
This paper defines a novel calculus, which is resolution-based and
enables unification of the principal existing resolution-based QBF
calculi, namely Q-resolution, long-distance Q-resolution and the expansion-based
calculus ... more >>>


TR14-038 | 24th March 2014
Ilario Bonacina, Nicola Galesi, Neil Thapen

Total space in resolution

Revisions: 1

We show $\Omega(n^2)$ lower bounds on the total space used in resolution refutations of random $k$-CNFs over $n$ variables, and of the graph pigeonhole principle and the bit pigeonhole principle for $n$ holes. This answers the long-standing open problem of whether there are families of $k$-CNF formulas of size $O(n)$ ... more >>>


TR14-081 | 13th June 2014
Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, Marc Vinyals

From Small Space to Small Width in Resolution

In 2003, Atserias and Dalmau resolved a major open question about the resolution proof system by establishing that the space complexity of CNF formulas is always an upper bound on the width needed to refute them. Their proof is beautiful but somewhat mysterious in that it relies heavily on tools ... more >>>


TR14-093 | 22nd July 2014
Dmitry Itsykson, Mikhail Slabodkin, Dmitry Sokolov

Resolution complexity of perfect mathcing principles for sparse graphs

The resolution complexity of the perfect matching principle was studied by Razborov [Raz04], who developed a technique for proving its lower bounds for dense graphs. We construct a constant degree bipartite graph $G_n$ such that the resolution complexity of the perfect matching principle for $G_n$ is $2^{\Omega(n)}$, where $n$ is ... more >>>


TR14-118 | 9th September 2014
Albert Atserias, Massimo Lauria, Jakob Nordström

Narrow Proofs May Be Maximally Long

We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n^Omega(w). This shows that the simple counting argument that any formula refutable in width w must have a proof in size n^O(w) is essentially tight. ... more >>>


TR14-120 | 16th September 2014
Olaf Beyersdorff, Leroy Chew, Mikolas Janota

Proof Complexity of Resolution-based QBF Calculi

Proof systems for quantified Boolean formulas (QBFs) provide a theoretical underpinning for the performance of important
QBF solvers. However, the proof complexity of these proof systems is currently not well understood and in particular
lower bound techniques are missing. In this paper we exhibit a new and elegant proof technique ... more >>>


TR14-146 | 6th November 2014
Ilario Bonacina, Nicola Galesi, Tony Huynh, Paul Wollan

Space proof complexity for random $3$-CNFs via a $(2-\epsilon)$-Hall's Theorem

We investigate the space complexity of refuting $3$-CNFs in Resolution and algebraic systems. No lower bound for refuting any family of $3$-CNFs was previously known for the total space in resolution or for the monomial space in algebraic systems. We prove that every Polynomial Calculus with Resolution refutation of a ... more >>>


TR15-033 | 6th March 2015
Alexander Razborov

An Ultimate Trade-Off in Propositional Proof Complexity

Revisions: 1

We exhibit an unusually strong trade-off between resolution proof width and tree-like proof size. Namely, we show that for any parameter $k=k(n)$ there are unsatisfiable $k$-CNFs that possess refutations of width $O(k)$, but such that any tree-like refutation of width $n^{1-\epsilon}/k$ must necessarily have {\em double} exponential size $\exp(n^{\Omega(k)})$. Conceptually, ... more >>>


TR15-053 | 7th April 2015
Massimo Lauria, Jakob Nordström

Tight Size-Degree Bounds for Sums-of-Squares Proofs

We exhibit families of 4-CNF formulas over n variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) d but require SOS proofs of size n^{Omega(d)} for values of d = d(n) from constant all the way up to n^{delta} for some universal constant delta. This shows that ... more >>>


TR15-059 | 10th April 2015
Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla

Feasible Interpolation for QBF Resolution Calculi

In sharp contrast to classical proof complexity we are currently short of lower bound techniques for QBF proof systems. In this paper we establish the feasible interpolation technique for all resolution-based QBF systems, whether modelling CDCL or expansion-based solving. This both provides the first general lower bound method for QBF ... more >>>


TR15-152 | 16th September 2015
Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla

Are Short Proofs Narrow? QBF Resolution is not Simple.

The groundbreaking paper `Short proofs are narrow - resolution made simple' by Ben-Sasson and Wigderson (J. ACM 2001) introduces what is today arguably the main technique to obtain resolution lower bounds: to show a lower bound for the width of proofs. Another important measure for resolution is space, and in ... more >>>


TR16-005 | 22nd January 2016
Olaf Beyersdorff, Leroy Chew, Mikolas Janota

Extension Variables in QBF Resolution

We investigate two QBF resolution systems that use extension variables: weak extended Q-resolution, where the extension variables are quantified at the innermost level, and extended Q-resolution, where the extension variables can be placed inside the quantifier prefix. These systems have been considered previously by Jussila et al. '07 who ... more >>>


TR16-057 | 11th April 2016
Ilario Bonacina

Total space in Resolution is at least width squared

Given an unsatisfiable $k$-CNF formula $\phi$ we consider two complexity measures in Resolution: width and total space. The width is the minimal $W$ such that there exists a Resolution refutation of $\phi$ with clauses of at most $W$ literals. The total space is the minimal size $T$ of a memory ... more >>>


TR16-175 | 8th November 2016
Pavel Pudlak, Neil Thapen

Random resolution refutations

Revisions: 2

We study the \emph{random resolution} refutation system defined in~[Buss et al. 2014]. This attempts to capture the notion of a resolution refutation that may make mistakes but is correct most of the time. By proving the equivalence of several different definitions, we show that this concept is robust. On the ... more >>>


TR16-203 | 21st December 2016
Christoph Berkholz, Jakob Nordström

Supercritical Space-Width Trade-offs for Resolution

We show that there are CNF formulas which can be refuted in resolution
in both small space and small width, but for which any small-width
proof must have space exceeding by far the linear worst-case upper
bound. This significantly strengthens the space-width trade-offs in
[Ben-Sasson '09]}, and provides one more ... more >>>


TR17-037 | 25th February 2017
Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla

Understanding Cutting Planes for QBFs

We define a cutting planes system CP+$\forall$red for quantified Boolean formulas (QBF) and analyse the proof-theoretic strength of this new calculus. While in the propositional case, Cutting Planes is of intermediate strength between resolution and Frege, our findings here show that the situation in QBF is slightly more complex: while ... more >>>


TR17-044 | 21st February 2017
Olaf Beyersdorff, Luke Hinde, Ján Pich

Reasons for Hardness in QBF Proof Systems

Revisions: 1

We aim to understand inherent reasons for lower bounds for QBF proof systems and revisit and compare two previous approaches in this direction.

The first of these relates size lower bounds for strong QBF Frege systems to circuit lower bounds via strategy extraction (Beyersdorff & Pich, LICS'16). Here we ... more >>>


TR18-041 | 26th February 2018
Sam Buss, Dmitry Itsykson, Alexander Knop, Dmitry Sokolov

Reordering Rule Makes OBDD Proof Systems Stronger

Atserias, Kolaitis, and Vardi [AKV04] showed that the proof system of Ordered Binary Decision Diagrams with conjunction and weakening, OBDD($\land$, weakening), simulates CP* (Cutting Planes with unary coefficients). We show that OBDD($\land$, weakening) can give exponentially shorter proofs than dag-like cutting planes. This is proved by showing that the Clique-Coloring ... more >>>


TR18-117 | 23rd June 2018
Fedor Part, Iddo Tzameret

Resolution with Counting: Lower Bounds over Different Moduli

Revisions: 2

Resolution over linear equations (introduced in [RT08]) emerged recently as an important object of study. This refutation system, denoted Res(lin$_R$), operates with disjunction of linear equations over a ring $R$. On the one hand, the system captures a natural ``minimal'' extension of resolution in which efficient counting can be achieved; ... more >>>


TR18-165 | 20th September 2018
Stefan Dantchev, Nicola Galesi, Barnaby Martin

Resolution and the binary encoding of combinatorial principles

We investigate the size complexity of proofs in $RES(s)$ -- an extension of Resolution working on $s$-DNFs instead of clauses -- for families of contradictions given in the {\em unusual binary} encoding. A motivation of our work is size lower bounds of refutations in Resolution for families of contradictions in ... more >>>


TR18-172 | 11th October 2018
Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan

Building Strategies into QBF Proofs

Strategy extraction is of paramount importance for quantified Boolean formulas (QBF), both in solving and proof complexity. It extracts (counter)models for a QBF from a run of the solver resp. the proof of the QBF, thereby allowing to certify the solver's answer resp. establish soundness of the system. So far ... more >>>


TR18-178 | 9th October 2018
Leroy Chew

Hardness and Optimality in QBF Proof Systems Modulo NP

Quantified Boolean Formulas (QBFs) extend propositional formulas with Boolean quantifiers. Working with QBF differs from propositional logic in its quantifier handling, but as propositional satisfiability (SAT) is a subproblem of QBF, all SAT hardness in solving and proof complexity transfers to QBF. This makes it difficult to analyse efforts dealing ... more >>>


TR19-052 | 9th April 2019
Nicola Galesi, Leszek Kolodziejczyk, Neil Thapen

Polynomial calculus space and resolution width

We show that if a $k$-CNF requires width $w$ to refute in resolution, then it requires space $\sqrt w$ to refute in polynomial calculus, where the space of a polynomial calculus refutation is the number of monomials that must be kept in memory when working through the proof. This is ... more >>>


TR19-057 | 6th April 2019
Olaf Beyersdorff, Joshua Blinkhorn

Proof Complexity of Symmetry Learning in QBF

For quantified Boolean formulas (QBF), a resolution system with a symmetry rule was recently introduced by Kauers and Seidl (Inf. Process. Lett. 2018). In this system, many formulas hard for QBF resolution admit short proofs.

Kauers and Seidl apply the symmetry rule on symmetries of the original formula. Here we ... more >>>


TR19-068 | 27th April 2019
Shuo Pang

LARGE CLIQUE IS HARD ON AVERAGE FOR RESOLUTION

Revisions: 1

We prove resolution lower bounds for $k$-Clique on the Erdos-Renyi random graph $G(n,n^{-{2\xi}\over{k-1}})$ (where $\xi>1$ is constant). First we show for $k=n^{c_0}$, $c_0\in(0,1/3)$, an $\exp({\Omega(n^{(1-\epsilon)c_0})})$ average lower bound on resolution where $\epsilon$ is arbitrary constant.

We then propose the model of $a$-irregular resolution. Extended from regular resolution, this model ... more >>>


TR19-084 | 26th May 2019
Michal Garlik

Resolution Lower Bounds for Refutation Statements

For any unsatisfiable CNF formula we give an exponential lower bound on the size of resolution refutations of a propositional statement that the formula has a resolution refutation. We describe three applications. (1) An open question in [Atserias-Müller,2019] asks whether a certain natural propositional encoding of the above statement is ... more >>>


TR19-097 | 4th July 2019
Jacobo Toran, Florian Wörz

Reversible Pebble Games and the Relation Between Tree-Like and General Resolution Space

Revisions: 1 , Comments: 1

We show a new connection between the space measure in tree-like resolution and the reversible pebble game in graphs. Using this connection we provide several formula classes for which there is a logarithmic factor separation between the space complexity measure in tree-like and general resolution. We show that these separations ... more >>>


TR19-174 | 2nd December 2019
Susanna de Rezende, Jakob Nordström, Kilian Risse, Dmitry Sokolov

Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs

We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson '01] and highly unbalanced, dense ... more >>>


TR20-005 | 17th January 2020
Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan

Hardness Characterisations and Size-Width Lower Bounds for QBF Resolution

Revisions: 1

We provide a tight characterisation of proof size in resolution for quantified Boolean formulas (QBF) by circuit complexity. Such a characterisation was previously obtained for a hierarchy of QBF Frege systems (Beyersdorff & Pich, LICS 2016), but leaving open the most important case of QBF resolution. Different from the Frege ... more >>>


TR20-011 | 9th February 2020
Dominik Scheder, Navid Talebanfard

Super Strong ETH is true for strong PPSZ

We construct $k$-CNFs with $m$ variables on which the strong version of PPSZ $k$-SAT algorithm, which uses bounded width resolution, has success probability at most $2^{-(1 - (1 + \epsilon)2/k)m}$ for every $\epsilon > 0$. Previously such a bound was known only for the weak PPSZ algorithm which exhaustively searches ... more >>>


TR20-034 | 12th March 2020
Erfan Khaniki

On Proof complexity of Resolution over Polynomial Calculus

Revisions: 3

The refutation system ${Res}_R({PC}_d)$ is a natural extension of resolution refutation system such that it operates with disjunctions of degree $d$ polynomials over ring $R$ with boolean variables. For $d=1$, this system is called ${Res}_R({lin})$. Based on properties of $R$, ${Res}_R({lin})$ systems can be too strong to prove lower ... more >>>


TR20-036 | 9th March 2020
Olaf Beyersdorff, Joshua Blinkhorn, Tomáš Peitl

Strong (D)QBF Dependency Schemes via Tautology-free Resolution Paths

We suggest a general framework to study dependency schemes for dependency quantified Boolean formulas (DQBF). As our main contribution, we exhibit a new tautology-free DQBF dependency scheme that generalises the reflexive resolution path dependency scheme. We establish soundness of the tautology-free scheme, implying that it can be used in any ... more >>>


TR20-053 | 16th April 2020
Olaf Beyersdorff, Benjamin Böhm

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution

QBF solvers implementing the QCDCL paradigm are powerful algorithms that
successfully tackle many computationally complex applications. However, our
theoretical understanding of the strength and limitations of these QCDCL
solvers is very limited.

In this paper we suggest to formally model QCDCL solvers as proof systems. We
define different policies that ... more >>>


TR20-188 | 12th December 2020
Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, Tomáš Peitl, Gaurav Sood

Hard QBFs for Merge Resolution

Revisions: 1

We prove the first proof size lower bounds for the proof system Merge Resolution (MRes [Olaf Beyersdorff et al., 2020]), a refutational proof system for prenex quantified Boolean formulas (QBF) with a CNF matrix. Unlike most QBF resolution systems in the literature, proofs in MRes consist of resolution steps together ... more >>>


TR21-074 | 3rd June 2021
Theodoros Papamakarios, Alexander Razborov

Space characterizations of complexity measures and size-space trade-offs in propositional proof systems

We identify two new big clusters of proof complexity measures equivalent up to
polynomial and $\log n$ factors. The first cluster contains, among others,
the logarithm of tree-like resolution size, regularized (that is, multiplied
by the logarithm of proof length) clause and monomial space, and clause
space, both ordinary and ... more >>>


TR21-076 | 4th June 2021
Dmitry Sokolov

Pseudorandom Generators, Resolution and Heavy Width

Revisions: 1

Following the paper of Alekhnovich, Ben-Sasson, Razborov, Wigderson \cite{ABRW04} we call a pseudorandom generator $\mathrm{PRG}\colon \{0, 1\}^n \to \{0, 1\}^m$ hard for for a propositional proof system $\mathrm{P}$ if $\mathrm{P}$ cannot efficiently prove the (properly encoded) statement $b \notin \mathrm{Im}(\mathrm{PRG})$ for any string $b \in \{0, 1\}^m$.

In \cite{ABRW04} authors ... more >>>


TR21-097 | 7th July 2021
Jacobo Toran, Florian Wörz

Number of Variables for Graph Identification and the Resolution of GI Formulas

We show that the number of variables and the quantifier depth needed to distinguish a pair of graphs by first-order logic sentences exactly match the complexity measures of clause width and positive depth needed to refute the corresponding graph isomorphism formula in propositional narrow resolution.

Using this connection, we ... more >>>


TR21-131 | 10th September 2021
Olaf Beyersdorff, Benjamin Böhm

QCDCL with Cube Learning or Pure Literal Elimination - What is best?

Revisions: 1

Quantified conflict-driven clause learning (QCDCL) is one of the main approaches for solving quantified Boolean formulas (QBF). We formalise and investigate several versions of QCDCL that include cube learning and/or pure-literal elimination, and formally compare the resulting solving models via proof complexity techniques. Our results show that almost all of ... more >>>


TR21-138 | 23rd September 2021
Rahul Santhanam, Iddo Tzameret

Iterated Lower Bound Formulas: A Diagonalization-Based Approach to Proof Complexity

We propose a diagonalization-based approach to several important questions in proof complexity. We illustrate this approach in the context of the algebraic proof system IPS and in the context of propositional proof systems more generally.

We give an explicit sequence of CNF formulas $\{\phi_n\}$ such that VNP$\neq$VP iff there are ... more >>>


TR21-158 | 12th November 2021
Noah Fleming, Toniann Pitassi, Robert Robere

Extremely Deep Proofs

Revisions: 1

We further the study of supercritical tradeoffs in proof and circuit complexity, which is a type of tradeoff between complexity parameters where restricting one complexity parameter forces another to exceed its worst-case upper bound. In particular, we prove a new family of supercritical tradeoffs between depth and size for Resolution, ... more >>>


TR21-176 | 30th November 2021
Theodoros Papamakarios

A super-polynomial separation between resolution and cut-free sequent calculus

We show a quadratic separation between resolution and cut-free sequent calculus width. We use this gap to get, for the first time, first, a super-polynomial separation between resolution and cut-free sequent calculus for refuting CNF formulas, and secondly, a quadratic separation between resolution width and monomial space in polynomial calculus ... more >>>


TR21-179 | 8th December 2021
tatsuie tsukiji

Smoothed Complexity of Learning Disjunctive Normal Forms, Inverting Fourier Transforms, and Verifying Small Circuits

Comments: 1

This paper aims to derandomize the following problems in the smoothed analysis of Spielman and Teng. Learn Disjunctive Normal Form (DNF), invert Fourier Transforms (FT), and verify small circuits' unsatisfiability. Learning algorithms must predict a future observation from the only $m$ i.i.d. samples of a fixed but unknown joint-distribution $P(G(x),y)$ ... more >>>


TR22-003 | 4th January 2022
Noah Fleming, Stefan Grosser, Mika Göös, Robert Robere

On Semi-Algebraic Proofs and Algorithms

Revisions: 1

We give a new characterization of the Sherali-Adams proof system, showing that there is a degree-$d$ Sherali-Adams refutation of an unsatisfiable CNF formula $C$ if and only if there is an $\varepsilon > 0$ and a degree-$d$ conical junta $J$ such that $viol_C(x) - \varepsilon = J$, where $viol_C(x)$ counts ... more >>>


TR22-036 | 10th March 2022
Agnes Schleitzer, Olaf Beyersdorff

Classes of Hard Formulas for QBF Resolution

Revisions: 1

To date, we know only a few handcrafted quantified Boolean formulas (QBFs) that are hard for central QBF resolution systems such as Q and QU, and only one specific QBF family to separate Q and QU.

Here we provide a general method to construct hard formulas for Q and ... more >>>


TR22-040 | 10th March 2022
Benjamin Böhm, Tomáš Peitl, Olaf Beyersdorff

Should decisions in QCDCL follow prefix order?

Quantified conflict-driven clause learning (QCDCL) is one of the main solving approaches for quantified Boolean formulas (QBF). One of the differences between QCDCL and propositional CDCL is that QCDCL typically follows the prefix order of the QBF for making decisions.
We investigate an alternative model for QCDCL solving where decisions ... more >>>


TR22-054 | 21st April 2022
Anastasia Sofronova, Dmitry Sokolov

A Lower Bound for $k$-DNF Resolution on Random CNF Formulas via Expansion

Random $\Delta$-CNF formulas are one of the few candidates that are expected to be hard to refute in any proof system. One of the frontiers in the direction of proving lower bounds on these formulas is the $k$-DNF Resolution proof system (aka $\mathrm{Res}(k)$). Assume we sample $m$ clauses over $n$ ... more >>>


TR22-080 | 25th May 2022
Meena Mahajan, Gaurav Sood

QBF Merge Resolution is powerful but unnatural

Revisions: 1

The Merge Resolution proof system (M-Res) for QBFs, proposed by Beyersdorff et al. in 2019, explicitly builds partial strategies inside refutations. The original motivation for this approach was to overcome the limitations encountered in long-distance Q-Resolution proof system (LD-Q-Res), where the syntactic side-conditions, while prohibiting all unsound resolutions, also end ... more >>>


TR23-051 | 18th April 2023
Benjamin Böhm, Olaf Beyersdorff

QCDCL vs QBF Resolution: Further Insights

We continue the investigation on the relations of QCDCL and QBF resolution systems. In particular, we introduce QCDCL versions that tightly characterise QU-Resolution and (a slight variant of) long-distance Q-Resolution. We show that most QCDCL variants - parameterised by different policies for decisions, unit propagations and reductions -- lead to ... more >>>


TR23-052 | 19th April 2023
Noah Fleming, Vijay Ganesh, Antonina Kolokolova, Chunxiao Li, Marc Vinyals

Limits of CDCL Learning via Merge Resolution

In their seminal work, Atserias et al. and independently Pipatsrisawat and Darwiche in 2009 showed that CDCL solvers can simulate resolution proofs with polynomial overhead. However, previous work does not address the tightness of the simulation, i.e., the question of how large this overhead needs to be. In this paper, ... more >>>


TR23-061 | 2nd May 2023
Abhimanyu Choudhury, Meena Mahajan

Dependency schemes in CDCL-based QBF solving: a proof-theoretic study

We formalize the notion of proof systems obtained by adding normal dependency schemes into the QCDCL proof system underlying algorithms for solving Quantified Boolean Formulas, by exploring the addition of the dependency schemes via two approaches: one as a preprocessing tool, and second in propagation and learnings in the QCDCL ... more >>>


TR23-129 | 21st August 2023
Sravanthi Chede, Leroy Chew, Balesh Kumar, Anil Shukla

Understanding Nullstellensatz for QBFs

QBF proof systems are routinely adapted from propositional logic along with adjustments for the new quantifications. Existing are two main successful frameworks, the reduction and expansion frameworks, inspired by QCDCL [Zhang et al. ICCAD.'2002] and CEGAR solving [Janota et al. Artif. Intell.'2016] respectively. However, the reduction framework, while immensely useful ... more >>>


TR24-001 | 2nd January 2024
Sam Buss, Neil Thapen

A Simple Supercritical Tradeoff between Size and Height in Resolution

We describe CNFs in n variables which, over a range of parameters, have small resolution refutations but are such that any small refutation must have height larger than n (even exponential in n), where the height of a refutation is the length of the longest path in it. This is ... more >>>


TR24-033 | 24th February 2024
Sam Buss, Emre Yolcu

Regular resolution effectively simulates resolution

Regular resolution is a refinement of the resolution proof system requiring that no variable be resolved on more than once along any path in the proof. It is known that there exist sequences of formulas that require exponential-size proofs in regular resolution while admitting polynomial-size proofs in resolution. Thus, with ... more >>>


TR24-162 | 24th October 2024
Agnes Schleitzer, Olaf Beyersdorff

Computationally Hard Problems Are Hard for QBF Proof Systems Too

Revisions: 1

There has been tremendous progress in the past decade in the field of quantified Boolean formulas (QBF), both in practical solving as well as in creating a theory of corresponding proof systems and their proof complexity analysis. Both for solving and for proof complexity, it is important to have interesting ... more >>>




ISSN 1433-8092 | Imprint