We explain an asymmetric Prover-Delayer game which precisely characterizes proof size in tree-like Resolution. This game was previously described in a parameterized complexity context to show lower bounds for parameterized formulas and for the classical pigeonhole principle. The main point of this note is to show that the asymmetric game in fact characterizes tree-like Resolution proof size, i.e. in principle our proof method allows to always achieve the optimal lower bounds. This is in contrast with previous techniques described in the literature. We also provide a very intuitive information-theoretic interpretation of the game.