Vanishing sums of roots of unity can be seen as a natural generalization of knapsack from Boolean variables to variables taking values over the roots of unity. We show that these sums are hard to prove for polynomial calculus and for sum-of-squares, both in terms of degree and size.
more >>>We investigate the space complexity of refuting $3$-CNFs in Resolution and algebraic systems. No lower bound for refuting any family of $3$-CNFs was previously known for the total space in resolution or for the monomial space in algebraic systems. We prove that every Polynomial Calculus with Resolution refutation of a ... more >>>
We study the space complexity of the cutting planes proof system, in which the lines in a proof are integral linear inequalities. We measure the space used by a refutation as the number of inequalities that need to be kept on a blackboard while verifying it. We show that any ... more >>>
We show $\Omega(n^2)$ lower bounds on the total space used in resolution refutations of random $k$-CNFs over $n$ variables, and of the graph pigeonhole principle and the bit pigeonhole principle for $n$ holes. This answers the long-standing open problem of whether there are families of $k$-CNF formulas of size $O(n)$ ... more >>>
We explain an asymmetric Prover-Delayer game which precisely characterizes proof size in tree-like Resolution. This game was previously described in a parameterized complexity context to show lower bounds for parameterized formulas and for the classical pigeonhole principle. The main point of this note is to show that the asymmetric game ... more >>>
We devise a new combinatorial characterization for proving space lower bounds in algebraic systems like Polynomial Calculus (Pc) and Polynomial Calculus with Resolution (Pcr). Our method can be thought as a Spoiler-Duplicator game, which is capturing boolean reasoning on polynomials instead that clauses as in the case of Resolution. Hence, ... more >>>
A general framework for parameterized proof complexity was introduced by Dantchev, Martin, and Szeider (FOCS'07). In that framework the parameterized version of any proof system is not fpt-bounded for some technical reasons, but we remark that this question becomes much more interesting if we restrict ourselves to those parameterized contradictions ... more >>>
We initiate the study of the proof complexity of propositional encoding of (weak cases of) concrete independence results. In particular we study the proof complexity of Paris-Harrington's Large Ramsey Theorem. We prove a conditional lower bound in Resolution and a quasipolynomial upper bound in bounded-depth Frege.
more >>>In this note we show that the asymmetric Prover-Delayer game developed by Beyersdorff, Galesi, and Lauria (ECCC TR10-059) for Parameterized Resolution is also applicable to other tree-like proof systems. In particular, we use this asymmetric Prover-Delayer game to show a lower bound of the form $2^{\Omega(n\log n)}$ for the pigeonhole ... more >>>
Parameterized Resolution and, moreover, a general framework for parameterized proof complexity was introduced by Dantchev, Martin, and Szeider (FOCS'07). In that paper, Dantchev et al. show a complexity gap in tree-like Parameterized Resolution for propositional formulas arising from translations of first-order principles.
We broadly investigate Parameterized Resolution obtaining the following ...
more >>>
We prove that Polynomial Calculus and Polynomial Calculus with Resolution are not automatizable, unless W[P]-hard problems are fixed parameter tractable by one-side error randomized algorithms. This extends to Polynomial Calculus the analogous result obtained for Resolution by Alekhnovich and Razborov (SIAM J. Computing, 38(4), 2008).
more >>>We introduce an algebraic proof system Pcrk, which combines together {\em Polynomial Calculus} (Pc) and {\em $k$-DNF Resolution} (Resk).
This is a natural generalization to Resk of the well-known {\em Polynomial Calculus with Resolution} (Pcr) system which combines together Pc and Resolution.
We study the complexity of proofs in such ... more >>>
We define a collection of Prover-Delayer games that characterize certain subsystems of resolution. This allows us to give some natural criteria which guarantee lower bounds on the resolution width of a formula, and to extend these results to formulas of unbounded initial width.
We also use games to give upper ... more >>>
We study the space complexity of refuting unsatisfiable random $k$-CNFs in
the Resolution proof system. We prove that for any large enough $\Delta$,
with high probability a random $k$-CNF over $n$ variables and $\Delta n$
clauses requires resolution clause space of
$\Omega(n \cdot \Delta^{-\frac{1+\epsilon}{k-2-\epsilon}})$,
for any $0<\epsilon<1/2$. For constant $\Delta$, ...
more >>>
We show that an LK proof of size $m$ of a monotone sequent (a sequent
that contains only formulas in the basis $\wedge,\vee$) can be turned
into a proof containing only monotone formulas of size $m^{O(\log m)}$
and with the number of proof lines polynomial in $m$. Also we show
... more >>>We study the complexity of proving the Pigeon Hole
Principle (PHP) in a monotone variant of the Gentzen Calculus, also
known as Geometric Logic. We show that the standard encoding
of the PHP as a monotone sequent admits quasipolynomial-size proofs
in this system. This result is a consequence of ...
more >>>