All reports by Author Jad Silbak:

__
TR23-167
| 13th November 2023
__

Marshall Ball, Ronen Shaltiel, Jad Silbak#### Non-malleable codes with optimal rate for poly-size circuits

__
TR23-149
| 5th October 2023
__

Ronen Shaltiel, Jad Silbak#### Explicit Codes for Poly-Size Circuits and Functions that are Hard to Sample on Low Entropy Distributions

Revisions: 2

__
TR22-117
| 23rd August 2022
__

Ronen Shaltiel, Jad Silbak#### Error Correcting Codes that Achieve BSC Capacity Against Channels that are Poly-Size Circuits

__
TR22-032
| 1st March 2022
__

Iftach Haitner, Noam Mazor, Jad Silbak#### Incompressiblity and Next-Block Pseudoentropy

__
TR21-124
| 17th August 2021
__

Iftach Haitner, Noam Mazor, Jad Silbak, Eliad Tsfadia#### On the Complexity of Two-Party Differential Privacy

Revisions: 1

__
TR20-047
| 16th April 2020
__

Ronen Shaltiel, Jad Silbak#### Explicit Uniquely Decodable Codes for Space Bounded Channels That Achieve List-Decoding Capacity

Revisions: 2

__
TR19-090
| 27th June 2019
__

Ronen Shaltiel, Swastik Kopparty, Jad Silbak#### Quasilinear time list-decodable codes for space bounded channels

Revisions: 2

__
TR19-081
| 31st May 2019
__

Iftach Haitner, Noam Mazor, Ronen Shaltiel, Jad Silbak#### Channels of Small Log-Ratio Leakage and Characterization of Two-Party Differentially Private Computation

Revisions: 1

__
TR18-071
| 15th April 2018
__

Iftach Haitner, Kobbi Nissim, Eran Omri, Ronen Shaltiel, Jad Silbak#### Computational Two-Party Correlation

Revisions: 1

__
TR16-134
| 29th August 2016
__

Ronen Shaltiel, Jad Silbak#### Explicit List-Decodable Codes with Optimal Rate for Computationally Bounded Channels

Revisions: 1

Marshall Ball, Ronen Shaltiel, Jad Silbak

We give an explicit construction of non-malleable codes with rate $1-o(1)$ for the tampering class of poly-size circuits. This rate is optimal, and improves upon the previous explicit construction of Ball, Dachman-Soled and Loss (CRYPTO 2022) which achieves a rate smaller than $\frac{1}{n}$. Our codes are based on the same ... more >>>

Ronen Shaltiel, Jad Silbak

Guruswami and Smith (J. ACM 2016) considered codes for channels that are poly-size circuits which modify at most a $p$-fraction of the bits of the codeword. This class of channels is significantly stronger than Shannon's binary symmetric channel (BSC), but weaker than Hamming's channels which are computationally unbounded.

The goal ... more >>>

Ronen Shaltiel, Jad Silbak

Guruswami and Smith (J. ACM 2016) considered codes for channels that are poly-size circuits which modify at most a $p$-fraction of the bits of the codeword. This class of channels is significantly stronger than Shannon's binary symmetric channel (BSC), but weaker than Hamming's channels which are computationally unbounded.

Guruswami and ...
more >>>

Iftach Haitner, Noam Mazor, Jad Silbak

A distribution is k-incompressible, Yao [FOCS â€™82], if no efficient compression scheme compresses it to less than k bits. While being a natural measure, its relation to other computational analogs of entropy such as pseudoentropy, Hastad, Impagliazzo, Levin, and Luby [SICOMP 99], and to other cryptographic hardness assumptions, was unclear.

... more >>>Iftach Haitner, Noam Mazor, Jad Silbak, Eliad Tsfadia

In distributed differential privacy, the parties perform analysis over their joint data while preserving the privacy for both datasets. Interestingly, for a few fundamental two-party functions such as inner product and Hamming distance, the accuracy of the distributed solution lags way behind what is achievable in the client-server setting. McGregor, ... more >>>

Ronen Shaltiel, Jad Silbak

We consider codes for space bounded channels. This is a model for communication under noise that was introduced by Guruswami and Smith (J. ACM 2016) and lies between the Shannon (random) and Hamming (adversarial) models. In this model, a channel is a space bounded procedure that reads the codeword in ... more >>>

Ronen Shaltiel, Swastik Kopparty, Jad Silbak

We consider codes for space bounded channels. This is a model for communication under noise that was studied by Guruswami and Smith (J. ACM 2016) and lies between the Shannon (random) and Hamming (adversarial) models. In this model, a channel is a space bounded procedure that reads the codeword in ... more >>>

Iftach Haitner, Noam Mazor, Ronen Shaltiel, Jad Silbak

Consider a PPT two-party protocol ?=(A,B) in which the parties get no private inputs and obtain outputs O^A,O^B?{0,1}, and let V^A and V^B denote the partiesâ€™ individual views. Protocol ? has ?-agreement if Pr[O^A=O^B]=1/2+?. The leakage of ? is the amount of information a party obtains about the event {O^A=O^B}; ... more >>>

Iftach Haitner, Kobbi Nissim, Eran Omri, Ronen Shaltiel, Jad Silbak

Let $\pi$ be an efficient two-party protocol that given security parameter $\kappa$, both parties output single bits $X_\kappa$ and $Y_\kappa$, respectively. We are interested in how $(X_\kappa,Y_\kappa)$ ``appears'' to an efficient adversary that only views the transcript $T_\kappa$. We make the following contributions:

\begin{itemize}

\item We develop new tools to ...
more >>>

Ronen Shaltiel, Jad Silbak

A stochastic code is a pair of encoding and decoding procedures $(Enc,Dec)$ where $Enc:\{0,1\}^k \times \{0,1\}^d \to \{0,1\}^n$, and a message $m \in \{0,1\}^k$ is encoded by $Enc(m,S)$ where $S \from \{0,1\}^d$ is chosen uniformly by the encoder. The code is $(p,L)$-list-decodable against a class $\mathcal{C}$ of ``channel functions'' $C:\{0,1\}^n ... more >>>