We study the power of randomized polynomial-time non-adaptive reductions to the problem of approximating Kolmogorov complexity and its polynomial-time bounded variants.
As our first main result, we give a sharp dichotomy for randomized non-adaptive reducibility to approximating Kolmogorov complexity. We show that any computable language $L$ that has a randomized ... more >>>
We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov-Rudich ... more >>>
In the noisy population recovery problem of Dvir et al., the goal is to learn
an unknown distribution $f$ on binary strings of length $n$ from noisy samples. For some parameter $\mu \in [0,1]$,
a noisy sample is generated by flipping each coordinate of a sample from $f$ independently with
more >>>
We study the problem of indexing irreducible polynomials over finite fields, and give the first efficient algorithm for this problem. Specifically, we show the existence of poly(n, log q)-size circuits that compute a bijection between {1, ... , |S|} and the set S of all irreducible, monic, univariate polynomials of ... more >>>
In the `Number-on-Forehead' (NOF) model of multiparty communication, the input is a $k \times m$ boolean matrix $A$ (where $k$ is the number of players) and Player $i$ sees all bits except those in the $i$-th row, and the players communicate by broadcast in order to evaluate a specified ... more >>>
We prove a Chernoff-like large deviation bound on the sum of non-independent random variables that have the following dependence structure. The variables $Y_1,\ldots,Y_r$ are arbitrary Boolean functions of independent random variables $X_1,\ldots,X_m$, modulo a restriction that every $X_i$ influences at most $k$ of the variables $Y_1,\ldots,Y_r$.
more >>>We prove lower bounds on the randomized two-party communication complexity of functions that arise from read-once boolean formulae.
A read-once boolean formula is a formula in propositional logic with the property that every variable appears exactly once. Such a formula can be represented by a tree, where the leaves correspond ... more >>>
For circuit classes R, the fundamental computational problem, Min-R,
asks for the minimum R-size of a boolean function presented as a truth
table. Prominent examples of this problem include Min-DNF, and
Min-Circuit (also called MCSP). We begin by presenting a new reduction
proving that Min-DNF is NP-complete. It is significantly ...
more >>>
We establish a lower bound of $\Omega{(\sqrt{n})}$ on the bounded-error quantum query complexity of read-once Boolean functions, providing evidence for the conjecture that $\Omega(\sqrt{D(f)})$ is a lower bound for all Boolean functions.Our technique extends a result of Ambainis, based on the idea that successful computation of a function requires ``decoherence'' ... more >>>
We prove the first time-space lower bound tradeoffs for randomized
computation of decision problems. The bounds hold even in the
case that the computation is allowed to have arbitrary probability
of error on a small fraction of inputs. Our techniques are an
extension of those used by Ajtai in his ...
more >>>
Recent work by Bernasconi, Damm and Shparlinski
proved lower bounds on the circuit complexity of the square-free
numbers, and raised as an open question if similar (or stronger)
lower bounds could be proved for the set of prime numbers. In
this short note, we answer this question ...
more >>>
We obtain the first non-trivial time-space tradeoff lower bound for
functions f:{0,1}^n ->{0,1} on general branching programs by exhibiting a
Boolean function f that requires exponential size to be computed by any
branching program of length cn, for some constant c>1. We also give the first
separation result between the ...
more >>>