Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Suguru Tamaki:

TR16-100 | 27th June 2016
Suguru Tamaki

A Satisfiability Algorithm for Depth Two Circuits with a Sub-Quadratic Number of Symmetric and Threshold Gates

We consider depth 2 unbounded fan-in circuits with symmetric and linear threshold gates. We present a deterministic algorithm that, given such a circuit with $n$ variables and $m$ gates, counts the number of satisfying assignments in time $2^{n-\Omega\left(\left(\frac{n}{\sqrt{m} \cdot \poly(\log n)}\right)^a\right)}$ for some constant $a>0$. Our algorithm runs in time ... more >>>

TR16-099 | 13th June 2016
Takayuki Sakai, Kazuhisa Seto, Suguru Tamaki, Junichi Teruyama

Bounded Depth Circuits with Weighted Symmetric Gates: Satisfiability, Lower Bounds and Compression

A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is weighted symmetric if there exist a function $g: \mathbb{Z} \to \{0,1\}$ and integers $w_0, w_1, \ldots, w_n$ such that $f(x_1,\ldots,x_n) = g(w_0+\sum_{i=1}^n w_i x_i)$ holds.

In this paper, we present algorithms for the circuit satisfiability problem of bounded depth circuits with AND, ... more >>>

TR16-022 | 22nd February 2016
Alexander Golovnev, Alexander Kulikov, Alexander Smal, Suguru Tamaki

Circuit size lower bounds and #SAT upper bounds through a general framework

Revisions: 2

Most of the known lower bounds for binary Boolean circuits with unrestricted depth are proved by the gate elimination method. The most efficient known algorithms for the #SAT problem on binary Boolean circuits use similar case analyses to the ones in gate elimination. Chen and Kabanets recently showed that the ... more >>>

TR15-136 | 28th July 2015
Takayuki Sakai, Kazuhisa Seto, Suguru Tamaki, Junichi Teruyama

A Satisfiability Algorithm for Depth-2 Circuits with a Symmetric Gate at the Top and AND Gates at the Bottom

In this paper, we present a moderately exponential time algorithm for the circuit satisfiability problem of
depth-2 unbounded-fan-in circuits with an arbitrary symmetric gate at the top and AND gates at the bottom.
As a special case, we obtain an algorithm for the maximum satisfiability problem that runs in ... more >>>

TR14-066 | 17th April 2014
Suguru Tamaki, Yuichi Yoshida

Robust Approximation of Temporal CSP

A temporal constraint language $\Gamma$ is a set of relations with first-order definitions in $({\mathbb{Q}}; <)$. Let CSP($\Gamma$) denote the set of constraint satisfaction problem instances with relations from $\Gamma$. CSP($\Gamma$) admits robust approximation if, for any $\varepsilon \geq 0$, given a $(1-\varepsilon)$-satisfiable instance of CSP($\Gamma$), we can compute an ... more >>>

TR12-071 | 29th May 2012
Kazuhisa Seto, Suguru Tamaki

A Satisfiability Algorithm and Average-Case Hardness for Formulas over the Full Binary Basis

We present a moderately exponential time algorithm for the satisfiability of Boolean formulas over the full binary basis.
For formulas of size at most $cn$, our algorithm runs in time $2^{(1-\mu_c)n}$ for some constant $\mu_c>0$.
As a byproduct of the running time analysis of our algorithm,
we get strong ... more >>>

TR09-074 | 10th September 2009
Suguru Tamaki, Yuichi Yoshida

A Query Efficient Non-Adaptive Long Code Test with Perfect Completeness

Long Code testing is a fundamental problem in the area of property
testing and hardness of approximation.
Long Code is a function of the form $f(x)=x_i$ for some index $i$.
In the Long Code testing, the problem is, given oracle access to a
collection of Boolean functions, to decide whether ... more >>>

TR08-011 | 21st November 2007
Kazuo Iwama, Suguru Tamaki

The Complexity of the Hajos Calculus for Planar Graphs

The planar Hajos calculus is the Hajos calculus with the restriction that all the graphs that appear in the construction (including a final graph) must be planar. We prove that the planar Hajos calculus is polynomially bounded iff the HajĀLos calculus is polynomially bounded.

more >>>

TR07-029 | 20th January 2007
Kazuhisa Makino, Suguru Tamaki, Masaki Yamamoto

A Dichotomy Theorem within Schaefer for the Boolean Connectivity Problem

Revisions: 1

P. Gopalan, P. G. Kolaitis, E. N. Maneva and C. H. Papadimitriou
studied in [Gopalan et al., ICALP2006] connectivity properties of the
solution-space of Boolean formulas, and investigated complexity issues
on connectivity problems in Schaefer's framework [Schaefer, STOC1978].
A set S of logical relations is Schaefer if all relations in ... more >>>

TR03-053 | 8th July 2003
Kazuo Iwama, Suguru Tamaki

Improved Upper Bounds for 3-SAT

This paper presents a new upper bound for the
$k$-satisfiability problem. For small $k$'s, especially for $k=3$,
there have been a lot of algorithms which run significantly faster
than the trivial $2^n$ bound. The following list summarizes those
algorithms where a constant $c$ means that the algorithm runs in time
more >>>

ISSN 1433-8092 | Imprint