We prove that $\mathrm{deg}(f) \leq 2 \, \mathrm{rdeg}(f)^4$ for every Boolean function $f$, where $\mathrm{deg}(f)$ is the degree of $f$ and $\mathrm{rdeg}(f)$ is the rational degree of $f$. This resolves the second of the three open problems stated by Nisan and Szegedy, and attributed to Fortnow, in 1994.
more >>>We study a natural complexity measure of Boolean functions known as the (exact) rational degree. For total functions $f$, it is conjectured that $\mathrm{rdeg}(f)$ is polynomially related to $\mathrm{deg}(f)$, where $\mathrm{deg}(f)$ is the Fourier degree. Towards this conjecture, we show that symmetric functions have rational degree at least $\mathrm{deg}(f)/2$ and ... more >>>