Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > SIDDHARTHA JAIN:
All reports by Author Siddhartha Jain:

TR22-096 | 8th July 2022
Mika Göös, Siddhartha Jain

Communication Complexity of Collision

The Collision problem is to decide whether a given list of numbers $(x_1,\ldots,x_n)\in[n]^n$ is $1$-to-$1$ or $2$-to-$1$ when promised one of them is the case. We show an $n^{\Omega(1)}$ randomised communication lower bound for the natural two-party version of Collision where Alice holds the first half of the bits of ... more >>>


TR22-058 | 26th April 2022
Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, Ran Tao

Separations in Proof Complexity and TFNP

Revisions: 1

It is well-known that Resolution proofs can be efficiently simulated by Sherali-Adams (SA) proofs. We show, however, that any such simulation needs to exploit huge coefficients: Resolution cannot be efficiently simulated by SA when the coefficients are written in unary. We also show that Reversible Resolution (a variant of MaxSAT ... more >>>


TR22-018 | 15th February 2022
Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, Ran Tao

Further Collapses in TFNP

We show $\text{EOPL}=\text{PLS}\cap\text{PPAD}$. Here the class $\text{EOPL}$ consists of all total search problems that reduce to the End-of-Potential-Line problem, which was introduced in the works by Hubacek and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 2020). In particular, our result yields a new simpler proof of the breakthrough collapse ... more >>>


TR21-016 | 16th February 2021
Shalev Ben-David, Mika Göös, Siddhartha Jain, Robin Kothari

Unambiguous DNFs from Hex

Revisions: 1

We exhibit an unambiguous $k$-DNF formula that requires CNF width $\tilde{\Omega}(k^{1.5})$. Our construction is inspired by the board game Hex and it is vastly simpler than previous ones, which achieved at best an exponent of $1.22$. Our result is known to imply several other improved separations in query and communication ... more >>>




ISSN 1433-8092 | Imprint