All reports by Author Siddhartha Jain:

__
TR22-058
| 26th April 2022
__

Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, Ran Tao#### Separations in Proof Complexity and TFNP

__
TR22-018
| 15th February 2022
__

Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, Ran Tao#### Further Collapses in TFNP

__
TR21-016
| 16th February 2021
__

Shalev Ben-David, Mika Göös, Siddhartha Jain, Robin Kothari#### Unambiguous DNFs from Hex

Revisions: 1

Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, Ran Tao

It is well-known that Resolution proofs can be efficiently simulated by Sherali-Adams (SA) proofs. We show, however, that any such simulation needs to exploit huge coefficients: Resolution cannot be efficiently simulated by SA when the coefficients are written in unary. We also show that Reversible Resolution (a variant of MaxSAT ... more >>>

Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, Ran Tao

We show $\text{EOPL}=\text{PLS}\cap\text{PPAD}$. Here the class $\text{EOPL}$ consists of all total search problems that reduce to the End-of-Potential-Line problem, which was introduced in the works by Hubacek and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 2020). In particular, our result yields a new simpler proof of the breakthrough collapse ... more >>>

Shalev Ben-David, Mika Göös, Siddhartha Jain, Robin Kothari

We exhibit an unambiguous $k$-DNF formula that requires CNF width $\tilde{\Omega}(k^{1.5})$. Our construction is inspired by the board game Hex and it is vastly simpler than previous ones, which achieved at best an exponent of $1.22$. Our result is known to imply several other improved separations in query and communication ... more >>>