We prove a sensitivity-to-communication lifting theorem for arbitrary gadgets. Given functions $f: \{0,1\}^n\to \{0,1\}$ and $g : \mathcal{X} \times \mathcal{Y}\to \{0,1\}$, denote $f\circ g(x,y) := f(g(x_1,y_1),\ldots,g(x_n,y_n))$. We show that for any $f$ with sensitivity $s$ and any $g$,
\[D(f\circ g) \geq s\cdot \bigg(\frac{\Omega(D(g))}{\log rk(g)} - \log rk(g)\bigg),\]
where ...
more >>>
We prove a lower bound on the communication complexity of computing the $n$-fold xor of an arbitrary function $f$, in terms of the communication complexity and rank of $f$. We prove that $D(f^{\oplus n}) \geq n \cdot \Big(\frac{\Omega(D(f))}{\log rk(f)} -\log rk(f)\Big )$, where here $D(f), D(f^{\oplus n})$ represent the ... more >>>
We define the marginal information of a communication protocol, and use it to prove XOR lemmas for communication complexity. We show that if every $C$-bit protocol has bounded advantage for computing a Boolean function $f$, then every $\tilde \Omega(C \sqrt{n})$-bit protocol has advantage $\exp(-\Omega(n))$ for computing the $n$-fold xor $f^{\oplus ... more >>>
Given a function $f:\mathbb F_2^n \to [-1,1]$, this work seeks to find a large affine subspace $\mathcal U$ such that $f$, when restricted to $\mathcal U$, has small nontrivial Fourier coefficients.
We show that for any function $f:\mathbb F_2^n \to [-1,1]$ with Fourier degree $d$, there exists an affine subspace ... more >>>
We give tight bounds on the degree $\ell$ homogenous parts $f_\ell$ of a bounded function $f$ on the cube. We show that if $f: \{\pm 1\}^n \rightarrow [-1,1]$ has degree $d$, then $\| f_\ell \|_\infty$ is bounded by $d^\ell/\ell!$, and $\| \hat{f}_\ell \|_1$ is bounded by $d^\ell e^{{\ell+1 \choose 2}} ... more >>>