We define the marginal information of a communication protocol, and use it to prove XOR lemmas for communication complexity. We show that if every $C$-bit protocol has bounded advantage for computing a Boolean function $f$, then every $\tilde \Omega(C \sqrt{n})$-bit protocol has advantage $\exp(-\Omega(n))$ for computing the $n$-fold xor $f^{\oplus n}$. We prove exponentially small bounds in the average case setting, and near optimal bounds for product distributions and for bounded-round protocols.
Fixed an issue with references within the paper.
We define the marginal information of a communication protocol, and use it to prove XOR lemmas for communication complexity. We show that if every $C$-bit protocol has bounded advantage for computing a Boolean function $f$, then every $\tilde \Omega(C \sqrt{n})$-bit protocol has advantage $\exp(-\Omega(n))$ for computing the $n$-fold xor $f^{\oplus n}$. We prove exponentially small bounds in the average case setting, and near optimal bounds for product distributions and for bounded-round protocols.
In this version, we fixed some typos in the definition of p_1 and p_2 in the proof of the subadditivity of marginal information.
We define the marginal information of a communication protocol, and use it to prove XOR lemmas for communication complexity. We show that if every $C$-bit protocol has bounded advantage for computing a Boolean function $f$, then every $\tilde \Omega(C \sqrt{n})$-bit protocol has advantage $\exp(-\Omega(n))$ for computing the $n$-fold xor $f^{\oplus n}$. We prove exponentially small bounds in the average case setting, and near optimal bounds for product distributions and for bounded-round protocols.