Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Shubhangi Saraf:

TR17-126 | 7th August 2017
Swastik Kopparty, Shubhangi Saraf

Local Testing and Decoding of High-Rate Error-Correcting Codes

We survey the state of the art in constructions of locally testable
codes, locally decodable codes and locally correctable codes of high rate.

more >>>

TR17-009 | 19th January 2017
Joshua Grochow, Mrinal Kumar, Michael Saks, Shubhangi Saraf

Towards an algebraic natural proofs barrier via polynomial identity testing

We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov-Rudich ... more >>>

TR16-122 | 11th August 2016
Sivakanth Gopi, Swastik Kopparty, Rafael Mendes de Oliveira, Noga Ron-Zewi, Shubhangi Saraf

Locally testable and Locally correctable Codes Approaching the Gilbert-Varshamov Bound

One of the most important open problems in the theory
of error-correcting codes is to determine the
tradeoff between the rate $R$ and minimum distance $\delta$ of a binary
code. The best known tradeoff is the Gilbert-Varshamov bound,
and says that for every $\delta \in (0, 1/2)$, there are ... more >>>

TR15-194 | 30th November 2015
Mrinal Kumar, Shubhangi Saraf

Arithmetic circuits with locally low algebraic rank

Revisions: 1

In recent years there has been a flurry of activity proving lower bounds for
homogeneous depth-4 arithmetic circuits [GKKS13, FLMS14, KLSS14, KS14c], which has brought us very close to statements that are known to imply VP $\neq$ VNP. It is a big question to go beyond homogeneity, and in ... more >>>

TR15-110 | 8th July 2015
Swastik Kopparty, Or Meir, Noga Ron-Zewi, Shubhangi Saraf

High-rate Locally-testable Codes with Quasi-polylogarithmic Query Complexity

Revisions: 1

An error correcting code is said to be \emph{locally testable} if
there is a test that checks whether a given string is a codeword,
or rather far from the code, by reading only a small number of symbols
of the string. Locally testable codes (LTCs) are both interesting
in their ... more >>>

TR15-071 | 23rd April 2015
Mrinal Kumar, Shubhangi Saraf

Sums of products of polynomials in few variables : lower bounds and polynomial identity testing

We study the complexity of representing polynomials as a sum of products of polynomials in few variables. More precisely, we study representations of the form $$P = \sum_{i = 1}^T \prod_{j = 1}^d Q_{ij}$$
such that each $Q_{ij}$ is an arbitrary polynomial that depends on at most $s$ variables.

... more >>>

TR15-068 | 21st April 2015
Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf

High rate locally-correctable and locally-testable codes with sub-polynomial query complexity

Revisions: 2

In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist binary LCCs and LTCs with block length $n$, constant rate (which can even be taken arbitrarily close to 1), constant ... more >>>

TR14-045 | 7th April 2014
Mrinal Kumar, Shubhangi Saraf

On the power of homogeneous depth 4 arithmetic circuits

Revisions: 2

We prove exponential lower bounds on the size of homogeneous depth 4 arithmetic circuits computing an explicit polynomial in $VP$. Our results hold for the {\it Iterated Matrix Multiplication} polynomial - in particular we show that any homogeneous depth 4 circuit computing the $(1,1)$ entry in the product of $n$ ... more >>>

TR14-026 | 27th February 2014
Jop Briet, Zeev Dvir, Guangda Hu, Shubhangi Saraf

Lower Bounds for Approximate LDCs

We study an approximate version of $q$-query LDCs (Locally Decodable Codes) over the real numbers and prove lower bounds on the encoding length of such codes. A $q$-query $(\alpha,\delta)$-approximate LDC is a set $V$ of $n$ points in $\mathbb{R}^d$ so that, for each $i \in [d]$ there are $\Omega(\delta n)$ ... more >>>

TR14-001 | 4th January 2014
Swastik Kopparty, Shubhangi Saraf, Amir Shpilka

Equivalence of Polynomial Identity Testing and Deterministic Multivariate Polynomial Factorization

In this paper we show that the problem of deterministically factoring multivariate polynomials reduces to the problem of deterministic polynomial identity testing. Specifically, we show that given an arithmetic circuit (either explicitly or via black-box access) that computes a polynomial $f(X_1,\ldots,X_n)$, the task of computing arithmetic circuits for the factors ... more >>>

TR13-181 | 20th December 2013
Mrinal Kumar, Shubhangi Saraf

Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits

In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree $n$ in $n^2$ variables such that any homogeneous depth 4 arithmetic circuit computing it must have size $n^{\Omega(\log \log n)}$.

Our results extend ... more >>>

TR13-160 | 20th November 2013
Zeev Dvir, Shubhangi Saraf, Avi Wigderson

Breaking the quadratic barrier for 3-LCCs over the Reals

We prove that 3-query linear locally correctable codes over the Reals of dimension $d$ require block length $n>d^{2+\lambda}$ for some fixed, positive $\lambda >0$. Geometrically, this means that if $n$ vectors in $R^d$ are such that each vector is spanned by a linear number of disjoint triples of others, then ... more >>>

TR13-153 | 8th November 2013
Mrinal Kumar, Shubhangi Saraf

The Limits of Depth Reduction for Arithmetic Formulas: It's all about the top fan-in

In recent years, a very exciting and promising method for proving lower bounds for arithmetic circuits has been proposed. This method combines the method of {\it depth reduction} developed in the works of Agrawal-Vinay [AV08], Koiran [Koi12] and Tavenas [Tav13], and the use of the shifted partial derivative complexity measure ... more >>>

TR13-068 | 3rd May 2013
Mrinal Kumar, Shubhangi Saraf

Lower Bounds for Depth 4 Homogenous Circuits with Bounded Top Fanin

We study the class of homogenous $\Sigma\Pi\Sigma\Pi(r)$ circuits, which are depth 4 homogenous circuits with top fanin bounded by $r$. We show that any homogenous $\Sigma\Pi\Sigma\Pi(r)$ circuit computing the permanent of an $n\times n$ matrix must have size at least $\exp\left(n^{\Omega(1/r)}\right)$.

In a recent result, Gupta, Kamath, Kayal and ... more >>>

TR12-148 | 7th November 2012
Eli Ben-Sasson, Ariel Gabizon, Yohay Kaplan, Swastik Kopparty, Shubhangi Saraf

A new family of locally correctable codes based on degree-lifted algebraic geometry codes

Revisions: 1

We describe new constructions of error correcting codes, obtained by "degree-lifting" a short algebraic geometry (AG) base-code of block-length $q$ to a lifted-code of block-length $q^m$, for arbitrary integer $m$. The construction generalizes the way degree-$d$, univariate polynomials evaluated over the $q$-element field (also known as Reed-Solomon codes) are "lifted" ... more >>>

TR12-139 | 2nd November 2012
Albert Ai, Zeev Dvir, Shubhangi Saraf, Avi Wigderson

Sylvester-Gallai type theorems for approximate collinearity

We study questions in incidence geometry where the precise position of points is `blurry' (e.g. due to noise, inaccuracy or error). Thus lines are replaced by narrow tubes, and more generally affine subspaces are replaced by their small neighborhood. We show that the presence of a sufficiently large number of ... more >>>

TR12-138 | 2nd November 2012
Zeev Dvir, Shubhangi Saraf, Avi Wigderson

Improved rank bounds for design matrices and a new proof of Kelly's theorem

We study the rank of complex sparse matrices in which the supports of different columns have small intersections. The rank of these matrices, called design matrices, was the focus of a recent work by Barak et. al. (BDWY11) in which they were used to answer questions regarding point configurations. In ... more >>>

TR11-054 | 13th April 2011
Arnab Bhattacharyya, Zeev Dvir, Shubhangi Saraf, Amir Shpilka

Tight lower bounds for 2-query LCCs over finite fields

A Locally Correctable Code (LCC) is an error correcting code that has a probabilistic
self-correcting algorithm that, with high probability, can correct any coordinate of the
codeword by looking at only a few other coordinates, even if a fraction $\delta$ of the
coordinates are corrupted. LCC's are a stronger form ... more >>>

TR11-046 | 2nd April 2011
Shubhangi Saraf, Ilya Volkovich

Black-Box Identity Testing of Depth-4 Multilinear Circuits

We study the problem of identity testing for multilinear $\Spsp(k)$ circuits, i.e. multilinear depth-$4$ circuits with fan-in $k$ at the top $+$ gate. We give the first polynomial-time deterministic
identity testing algorithm for such circuits. Our results also hold in the black-box setting.

The running time of our algorithm is ... more >>>

TR11-044 | 25th March 2011
Shubhangi Saraf, Sergey Yekhanin

Noisy Interpolation of Sparse Polynomials, and Applications

Let $f\in F_q[x]$ be a polynomial of degree $d\leq q/2.$ It is well-known that $f$ can be uniquely recovered from its values at some $2d$ points even after some small fraction of the values are corrupted. In this paper we establish a similar result for sparse polynomials. We show that ... more >>>

TR10-148 | 23rd September 2010
Swastik Kopparty, Shubhangi Saraf, Sergey Yekhanin

High-rate codes with sublinear-time decoding

Locally decodable codes are error-correcting codes that admit efficient decoding algorithms; any bit of the original message can be recovered by looking at only a small number of locations of a corrupted codeword. The tradeoff between the rate of a code and the locality/efficiency of its decoding algorithms has been ... more >>>

TR09-115 | 13th November 2009
Swastik Kopparty, Shubhangi Saraf

Local list-decoding and testing of random linear codes from high-error

In this paper, we give surprisingly efficient algorithms for list-decoding and testing
{\em random} linear codes. Our main result is that random sparse linear codes are locally testable and locally list-decodable
in the {\em high-error} regime with only a {\em constant} number of queries.
More precisely, we show that ... more >>>

TR09-032 | 16th April 2009
Neeraj Kayal, Shubhangi Saraf

Blackbox Polynomial Identity Testing for Depth 3 Circuits

We study depth three arithmetic circuits with bounded top fanin. We give the first deterministic polynomial time blackbox identity test for depth three circuits with bounded top fanin over the field of rational numbers, thus resolving a question posed by Klivans and Spielman (STOC 2001).

Our main technical result is ... more >>>

TR09-004 | 15th January 2009
Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, Madhu Sudan

Extensions to the Method of Multiplicities, with applications to Kakeya Sets and Mergers

Revisions: 2

We extend the ``method of multiplicities'' to get the following results, of interest in combinatorics and randomness extraction.
\item We show that every Kakeya set in $\F_q^n$, the $n$-dimensional vector space over the finite field on $q$ elements, must be of size at least $q^n/2^n$. This bound is tight ... more >>>

ISSN 1433-8092 | Imprint