Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > JELANI NELSON:
All reports by Author Jelani Nelson:

TR18-129 | 13th July 2018
Jelani Nelson, Huacheng Yu

Optimal Lower Bounds for Distributed and Streaming Spanning Forest Computation

Revisions: 1

We show optimal lower bounds for spanning forest computation in two different models:

* One wants a data structure for fully dynamic spanning forest in which updates can insert or delete edges amongst a base set of $n$ vertices. The sole allowed query asks for a spanning forest, which the ... more >>>


TR10-098 | 17th June 2010
Daniel Kane, Jelani Nelson

A Derandomized Sparse Johnson-Lindenstrauss Transform

Revisions: 2

Recent work of [Dasgupta-Kumar-Sarl\'{o}s, STOC 2010] gave a sparse Johnson-Lindenstrauss transform and left as a main open question whether their construction could be efficiently derandomized. We answer their question affirmatively by giving an alternative proof of their result requiring only bounded independence hash functions. Furthermore, the sparsity bound obtained in ... more >>>


TR09-117 | 18th November 2009
Ilias Diakonikolas, Daniel Kane, Jelani Nelson

Bounded Independence Fools Degree-2 Threshold Functions

Revisions: 1

Let x be a random vector coming from any k-wise independent distribution over {-1,1}^n. For an n-variate degree-2 polynomial p, we prove that E[sgn(p(x))] is determined up to an additive epsilon for k = poly(1/epsilon). This answers an open question of Diakonikolas et al. (FOCS 2009). Using standard constructions of ... more >>>


TR07-105 | 21st September 2007
Jelani Nelson

A Note on Set Cover Inapproximability Independent of Universe Size

Revisions: 1

In the set cover problem we are given a collection of $m$ sets whose union covers $[n] = \{1,\ldots,n\}$ and must find a minimum-sized subcollection whose union still covers $[n]$. We investigate the approximability of set cover by an approximation ratio that depends only on $m$ and observe that, for ... more >>>




ISSN 1433-8092 | Imprint