Recent work of [Dasgupta-Kumar-Sarlos, STOC 2010] gave a sparse Johnson-Lindenstrauss transform and left as a main open question whether their construction could be efficiently derandomized. We answer their question affirmatively by giving an alternative proof of their result requiring only bounded independence hash functions. Furthermore, the sparsity bound obtained in our proof is improved. Our work implies the first implementation of a Johnson-Lindenstrauss transform in data streams with sublinear update time.
Improved seed length and includes alternative proof of JL row optimality (see appendix); other minor changes.
Recent work of [Dasgupta-Kumar-Sarl\'{o}s, STOC 2010] gave a sparse Johnson-Lindenstrauss transform and left as a main open question whether their construction could be efficiently derandomized. We answer their question affirmatively by giving an alternative proof of their result requiring only bounded independence hash functions. Furthermore, the sparsity bound obtained in our proof is improved. The main ingredient in our proof is a spectral moment bound for quadratic forms that was recently used in [Diakonikolas-Kane-Nelson, FOCS 2010].
-- Improved introduction and related work section, and fixed various typos.
-- Added a warmup section, Section 4, which gives a new short proof of the standard, non-sparse Johnson-Lindenstrauss lemma.
Recent work of [Dasgupta-Kumar-Sarl\'{o}s, STOC 2010] gave a sparse Johnson-Lindenstrauss transform and left as a main open question whether their construction could be efficiently derandomized. We answer their question affirmatively by giving an alternative proof of their result requiring only bounded independence hash functions. Furthermore, the sparsity bound obtained in our proof is improved. The main ingredient in our proof is a spectral moment bound for quadratic forms that was recently used in [Diakonikolas-Kane-Nelson, CoRR abs/0911.3389].