All reports by Author Gillat Kol:

__
TR22-129
| 15th September 2022
__

Klim Efremenko, Gillat Kol, Raghuvansh Saxena, Zhijun Zhang#### Binary Codes with Resilience Beyond 1/4 via Interaction

__
TR22-050
| 12th April 2022
__

Klim Efremenko, Bernhard Haeupler, Yael Kalai, Pritish Kamath, Gillat Kol, Nicolas Resch, Raghuvansh Saxena#### Circuits Resilient to Short-Circuit Errors

__
TR21-160
| 15th November 2021
__

Klim Efremenko, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena#### Tight Bounds for General Computation in Noisy Broadcast Networks

__
TR21-060
| 8th April 2021
__

Klim Efremenko, Gillat Kol, Raghuvansh Saxena#### Optimal Error Resilience of Adaptive Message Exchange

__
TR21-051
| 8th April 2021
__

Klim Efremenko, Gillat Kol, Raghuvansh Saxena#### Binary Interactive Error Resilience Beyond $1/8$ (or why $(1/2)^3 > 1/8$)

__
TR21-027
| 24th February 2021
__

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena, Zhao Song, Huacheng Yu#### Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability

__
TR21-001
| 1st January 2021
__

Klim Efremenko, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena#### Computation Over the Noisy Broadcast Channel with Malicious Parties

__
TR20-022
| 19th February 2020
__

Klim Efremenko, Gillat Kol, Raghuvansh Saxena#### Interactive Error Resilience Beyond $\frac{2}{7}$

Revisions: 1

__
TR19-132
| 26th September 2019
__

Klim Efremenko, Gillat Kol, Raghuvansh Saxena#### Radio Network Coding Requires Logarithmic Overhead

Revisions: 1

__
TR19-111
| 16th August 2019
__

Klim Efremenko, Gillat Kol, Raghuvansh Saxena#### Noisy Beeps

__
TR17-093
| 22nd May 2017
__

Klim Efremenko, Gillat Kol, Raghuvansh Saxena#### Interactive Coding Over the Noisy Broadcast Channel

__
TR16-113
| 22nd July 2016
__

Gillat Kol, Ran Raz, Avishay Tal#### Time-Space Hardness of Learning Sparse Parities

__
TR15-168
| 18th October 2015
__

Gillat Kol#### Interactive Compression for Product Distributions

__
TR15-165
| 14th October 2015
__

Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, Avi Wigderson#### Towards Optimal Deterministic Coding for Interactive Communication

Revisions: 1

__
TR15-088
| 31st May 2015
__

Anat Ganor, Gillat Kol, Ran Raz#### Exponential Separation of Communication and External Information

__
TR14-113
| 27th August 2014
__

Anat Ganor, Gillat Kol, Ran Raz#### Exponential Separation of Information and Communication for Boolean Functions

__
TR14-049
| 11th April 2014
__

Anat Ganor, Gillat Kol, Ran Raz#### Exponential Separation of Information and Communication

Revisions: 1

__
TR14-046
| 8th April 2014
__

Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff#### Approximate Nonnegative Rank is Equivalent to the Smooth Rectangle Bound

__
TR13-079
| 2nd June 2013
__

Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff#### Direct Sum Fails for Zero Error Average Communication

__
TR13-001
| 2nd January 2013
__

Gillat Kol, Ran Raz#### Interactive Channel Capacity

Revisions: 1

__
TR12-088
| 7th July 2012
__

Irit Dinur, Gillat Kol#### Covering CSPs

__
TR11-122
| 14th September 2011
__

Gillat Kol, Ran Raz#### Competing Provers Protocols for Circuit Evaluation

__
TR09-138
| 14th December 2009
__

Gillat Kol, Ran Raz#### Bounds on 2-Query Locally Testable Codes with Affine Tests

__
TR09-128
| 29th November 2009
__

Gillat Kol, Ran Raz#### Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist

Klim Efremenko, Gillat Kol, Raghuvansh Saxena, Zhijun Zhang

In the reliable transmission problem, a sender, Alice, wishes to transmit a bit-string x to a remote receiver, Bob, over a binary channel with adversarial noise. The solution to this problem is to encode x using an error correcting code. As it is long known that the distance of binary ... more >>>

Klim Efremenko, Bernhard Haeupler, Yael Kalai, Pritish Kamath, Gillat Kol, Nicolas Resch, Raghuvansh Saxena

Given a Boolean circuit $C$, we wish to convert it to a circuit $C'$ that computes the same function as $C$ even if some of its gates suffer from adversarial short circuit errors, i.e., their output is replaced by the value of one of their inputs [KLM97]. Can we ... more >>>

Klim Efremenko, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena

Let $\Pi$ be a protocol over the $n$-party broadcast channel, where in each round, a pre-specified party broadcasts a symbol to all other parties. We wish to design a scheme that takes such a protocol $\Pi$ as input and outputs a noise resilient protocol $\Pi'$ that simulates $\Pi$ over the ... more >>>

Klim Efremenko, Gillat Kol, Raghuvansh Saxena

We study the error resilience of the message exchange task: Two parties, each holding a private input, want to exchange their inputs. However, the channel connecting them is governed by an adversary that may corrupt a constant fraction of the transmissions. What is the maximum fraction of corruptions that still ... more >>>

Klim Efremenko, Gillat Kol, Raghuvansh Saxena

Interactive error correcting codes are codes that encode a two party communication protocol to an error-resilient protocol that succeeds even if a constant fraction of the communicated symbols are adversarially corrupted, at the cost of increasing the communication by a constant factor. What is the largest fraction of corruptions that ... more >>>

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena, Zhao Song, Huacheng Yu

We give an almost quadratic $n^{2-o(1)}$ lower bound on the space consumption of any $o(\sqrt{\log n})$-pass streaming algorithm solving the (directed) $s$-$t$ reachability problem. This means that any such algorithm must essentially store the entire graph. As corollaries, we obtain almost quadratic space lower bounds for additional fundamental problems, including ... more >>>

Klim Efremenko, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena

We study the $n$-party noisy broadcast channel with a constant fraction of malicious parties. Specifically, we assume that each non-malicious party holds an input bit, and communicates with the others in order to learn the input bits of all non-malicious parties. In each communication round, one of the parties broadcasts ... more >>>

Klim Efremenko, Gillat Kol, Raghuvansh Saxena

Interactive error correcting codes can protect interactive communication protocols against a constant fraction of adversarial errors, while incurring only a constant multiplicative overhead in the total communication. What is the maximum fraction of errors that such codes can protect against?

For the non-adaptive channel, where the parties must agree ... more >>>

Klim Efremenko, Gillat Kol, Raghuvansh Saxena

We consider the celebrated radio network model for abstracting communication in wireless networks. In this model, in any round, each node in the network may broadcast a message to all its neighbors. However, a node is able to hear a message broadcast by a neighbor only if no collision occurred, ... more >>>

Klim Efremenko, Gillat Kol, Raghuvansh Saxena

We study the effect of noise on the $n$-party beeping model. In this model, in every round, each party may decide to either `beep' or not. All parties hear a beep if and only if at least one party beeps. The beeping model is becoming increasingly popular, as it offers ... more >>>

Klim Efremenko, Gillat Kol, Raghuvansh Saxena

A set of $n$ players, each holding a private input bit, communicate over a noisy broadcast channel. Their mutual goal is for all players to learn all inputs. At each round one of the players broadcasts a bit to all the other players, and the bit received by each player ... more >>>

Gillat Kol, Ran Raz, Avishay Tal

We define a concept class ${\cal F}$ to be time-space hard (or memory-samples hard) if any learning algorithm for ${\cal F}$ requires either a memory of size super-linear in $n$ or a number of samples super-polynomial in $n$, where $n$ is the length of one sample.

A recent work shows ... more >>>

Gillat Kol

We study the interactive compression problem: Given a two-party communication protocol with small information cost, can it be compressed so that the total number of bits communicated is also small? We consider the case where the parties have inputs that are independent of each other, and give a simulation protocol ... more >>>

Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, Avi Wigderson

We study \emph{efficient, deterministic} interactive coding schemes that simulate any interactive protocol both under random and adversarial errors, and can achieve a constant communication rate independent of the protocol length.

For channels that flip bits independently with probability~$\epsilon<1/2$, our coding scheme achieves a communication rate of $1 - O(\sqrt{H({\epsilon})})$ and ... more >>>

Anat Ganor, Gillat Kol, Ran Raz

We show an exponential gap between communication complexity and external information complexity, by analyzing a communication task suggested as a candidate by Braverman [Bra13]. Previously, only a separation of communication complexity and internal information complexity was known [GKR14,GKR15].

More precisely, we obtain an explicit example of a search problem with ... more >>>

Anat Ganor, Gillat Kol, Ran Raz

We show an exponential gap between communication complexity and information complexity for boolean functions, by giving an explicit example of a partial function with information complexity $\leq O(k)$, and distributional communication complexity $\geq 2^k$. This shows that a communication protocol for a partial boolean function cannot always be compressed to ... more >>>

Anat Ganor, Gillat Kol, Ran Raz

We show an exponential gap between communication complexity and information complexity, by giving an explicit example for a communication task (relation), with information complexity $\leq O(k)$, and distributional communication complexity $\geq 2^k$. This shows that a communication protocol cannot always be compressed to its internal information. By a result of ... more >>>

Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff

We consider two known lower bounds on randomized communication complexity: The smooth rectangle bound and the logarithm of the approximate non-negative rank. Our main result is that they are the same up to a multiplicative constant and a small additive term.

The logarithm of the nonnegative rank is known to ...
more >>>

Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff

We show that in the model of zero error communication complexity, direct sum fails for average communication complexity as well as for external information cost. Our example also refutes a version of a conjecture by Braverman et al. that in the zero error case amortized communication complexity equals external information ... more >>>

Gillat Kol, Ran Raz

We study the interactive channel capacity of an $\epsilon$-noisy channel. The interactive channel capacity $C(\epsilon)$ is defined as the minimal ratio between the communication complexity of a problem (over a non-noisy channel), and the communication complexity of the same problem over the binary symmetric channel with noise rate $\epsilon$, where ... more >>>

Irit Dinur, Gillat Kol

We study the covering complexity of constraint satisfaction problems (CSPs). The covering number of a CSP instance C, denoted $\nu(C)$, is the smallest number of assignments to the variables, such that each constraint is satisfied by at least one of the assignments. This covering notion describes situations in which we ... more >>>

Gillat Kol, Ran Raz

Let $C$ be a (fan-in $2$) Boolean circuit of size $s$ and depth $d$, and let $x$ be an input for $C$. Assume that a verifier that knows $C$ but doesn't know $x$ can access the low degree extension of $x$ at one random point. Two competing provers try to ... more >>>

Gillat Kol, Ran Raz

We study Locally Testable Codes (LTCs) that can be tested by making two queries to the tested word using an affine test. That is, we consider LTCs over a finite field F, with codeword testers that only use tests of the form $av_i + bv_j = c$, where v is ... more >>>

Gillat Kol, Ran Raz

The Unique Games Conjecture (UGC) is possibly the most important open problem in the research of PCPs and hardness of approximation. The conjecture is a strengthening of the PCP Theorem, predicting the existence of a special type of PCP verifiers: 2-query verifiers that only make unique tests. Moreover, the UGC ... more >>>