We show an exponential gap between communication complexity and information complexity, by giving an explicit example for a communication task (relation), with information complexity $\leq O(k)$, and distributional communication complexity $\geq 2^k$. This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman, our gap is the largest possible. By a result of Braverman and Rao, our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold.
A simplification of the construction and the lower bound proof. The upper bound is somewhat more involved, but is still relatively easy.
We also added a general tool to upper bound the information complexity of a protocol.
We show an exponential gap between communication complexity and information complexity, by giving an explicit example for a communication task (relation), with information complexity $\leq O(k)$, and distributional communication complexity $\geq 2^k$. This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman, our gap is the largest possible. By a result of Braverman and Rao, our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold.