A matrix is blocky if it is a blowup of a permutation matrix. The blocky rank of a matrix M is the minimum number of blocky matrices that linearly span M. Hambardzumyan, Hatami and Hatami defined blocky rank and showed that it is connected to communication complexity and operator theory. ... more >>>
A seminal result in learning theory characterizes the PAC learnability of binary classes through the Vapnik-Chervonenkis dimension. Extending this characterization to the general multiclass setting has been open since the pioneering works on multiclass PAC learning in the late 1980s. This work resolves this problem: we characterize multiclass PAC learnability ... more >>>
We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness.
more >>>We give tight bounds on the degree $\ell$ homogenous parts $f_\ell$ of a bounded function $f$ on the cube. We show that if $f: \{\pm 1\}^n \rightarrow [-1,1]$ has degree $d$, then $\| f_\ell \|_\infty$ is bounded by $d^\ell/\ell!$, and $\| \hat{f}_\ell \|_1$ is bounded by $d^\ell e^{{\ell+1 \choose 2}} ... more >>>
We define the shadow complexity of a polytope P as the maximum number of vertices in a linear projection of $P$ to the plane. We describe connections to algebraic complexity and to parametrized optimization. We also provide several basic examples and constructions, and develop tools for bounding shadow complexity.
We consider the following question: using a source of labeled data and interaction with an untrusted prover, what is the complexity of verifying that a given hypothesis is "approximately correct"? We study interactive proof systems for PAC verification, where a verifier that interacts with a prover is required to accept ... more >>>
We prove a sharp lower bound on the distributional communication complexity of the exact gap-hamming problem.
more >>>There are various notions of balancing set families that appear in combinatorics and computer science. For example, a family of proper non-empty subsets $S_1,\ldots,S_k \subset [n]$ is balancing if for every subset $X \subset \{1,2,\ldots,n\}$ of size $n/2$, there is an $i \in [k]$ so that $|S_i \cap X| = ... more >>>
We prove anti-concentration for the inner product of two independent random vectors in the discrete cube. Our results imply Chakrabarti and Regev's lower bound on the randomized communication complexity of the gap-hamming problem. They are also meaningful in the context of randomness extraction. The proof provides a framework for establishing ... more >>>
This work is about the monotone versions of the algebraic complexity classes VP and VNP. The main result is that monotone VNP is strictly stronger than monotone VP.
Key-agreement protocols whose security is proven in the random oracle model are an important alternative to the more common public-key based key-agreement protocols. In the random oracle model, the parties and the eavesdropper have access to a shared random function (an "oracle"), but they are limited in the number of ... more >>>
This work introduces a model of distributed learning in the spirit of Yao's communication complexity model. We consider a two-party setting, where each of the players gets a list of labelled examples and they communicate in order to jointly perform some learning task. To naturally fit into the framework of ... more >>>
We prove an essentially sharp $\tilde\Omega(n/k)$ lower bound on the $k$-round distributional complexity of the $k$-step pointer chasing problem under the uniform distribution, when Bob speaks first. This is an improvement over Nisan and Wigderson's $\tilde \Omega(n/k^2)$ lower bound. A key part of the proof is using triangular discrimination instead ... more >>>
The isoperimetric profile of a graph is a function that measures, for an integer $k$, the size of the smallest edge boundary over all sets of vertices of size $k$. We observe a connection between isoperimetric profiles and computational complexity. We illustrate this connection by an example from communication complexity, ... more >>>
We prove that proper PAC learnability implies compression. Namely, if a concept $C \subseteq \Sigma^X$ is properly PAC learnable with $d$ samples, then $C$ has a sample compression scheme of size $2^{O(d)}$.
In particular, every boolean concept class with constant VC dimension has a sample compression scheme of constant size. ...
more >>>
In this work we study the quantitative relation between VC-dimension and two other basic parameters related to learning and teaching. We present relatively efficient constructions of {\em sample compression schemes} and
for classes of low VC-dimension. Let $C$ be a finite boolean concept class of VC-dimension $d$. Set $k ...
more >>>
We study the maximum possible sign rank of $N \times N$ sign matrices with a given VC dimension $d$. For $d=1$, this maximum is $3$. For $d=2$, this maximum is $\tilde{\Theta}(N^{1/2})$. Similar (slightly less accurate) statements hold for $d>2$ as well. We discuss the tightness of our methods, and describe ... more >>>
We study internal compression of communication protocols
to their internal entropy, which is the entropy of the transcript from the players' perspective.
We first show that errorless compression to the internal entropy
(and hence to the internal information) is impossible.
We then provide two internal compression schemes with error.
One ...
more >>>
We show that the deterministic multiparty communication complexity of set disjointness for $k$ parties on a universe of size $n$ is $\Omega(n/4^k)$. We also simplify Sherstov's proof
showing an $\Omega(\sqrt{n}/(k2^k))$ lower bound for the randomized communication complexity of set disjointness.
We consider two known lower bounds on randomized communication complexity: The smooth rectangle bound and the logarithm of the approximate non-negative rank. Our main result is that they are the same up to a multiplicative constant and a small additive term.
The logarithm of the nonnegative rank is known to ...
more >>>
Fooling pairs are one of the standard methods for proving lower bounds for deterministic two-player communication complexity. We study fooling pairs in the context of randomized communication complexity.
We show that every fooling pair induces far away distributions on transcripts of private-coin protocols. We then conclude that the private-coin randomized ...
more >>>
This paper studies the elementary symmetric polynomials $S_k(x)$ for $x \in \mathbb{R}^n$. We show that if $|S_k(x)|,|S_{k+1}(x)|$ are small for some $k>0$ then $|S_\ell(x)|$ is also small for all $\ell > k$. We use this to prove probability tail bounds for the symmetric polynomials when the inputs are only $t$-wise ... more >>>
This note studies the average-case comparison-complexity of sorting n elements when there is a known distribution on inputs and the goal is to minimize
the expected number of comparisons. We generalize Fredman's algorithm which
is a variant of insertion sort and provide a basically tight upper bound: If \mu is
more >>>
We show that in the model of zero error communication complexity, direct sum fails for average communication complexity as well as for external information cost. Our example also refutes a version of a conjecture by Braverman et al. that in the zero error case amortized communication complexity equals external information ... more >>>
We obtain a strong direct product theorem for two-party bounded round communication complexity.
Let suc_r(\mu,f,C) denote the maximum success probability of an r-round communication protocol that uses
at most C bits of communication in computing f(x,y) when (x,y)~\mu.
Jain et al. [JPY12] have recently showed that if
more >>>
We give exponentially small upper bounds on the success probability for computing the direct product of any function over any distribution using a communication protocol. Let suc(?,f,C) denote the maximum success probability of a 2-party communication protocol for computing f(x,y) with C bits of communication, when the inputs (x,y) are ... more >>>
We study several problems in which an {\em unknown} distribution over an {\em unknown} population of vectors needs to be recovered from partial or noisy samples, each of which nearly completely erases or obliterates the original vector. For example, consider a distribution $p$ over a population $V \subseteq \{0,1\}^n$. A ... more >>>
We give an example of a non-commutative monotone polynomial f which can be computed by a polynomial-size non-commutative formula, but every monotone non-commutative circuit computing f must have an exponential size. In the non-commutative setting this gives, a fortiori, an exponential separation between monotone and general formulas, monotone and general ... more >>>
We introduce a notion of non-black-box access to computational devices (such as circuits, formulas, decision trees, and so forth) that we call \emph{restriction access}. Restrictions are partial assignments to input variables. Each restriction simplifies the device, and yields a new device for the restricted function on the unassigned variables. On ... more >>>
This work deals with the power of linear algebra in the context of multilinear computation. By linear algebra we mean algebraic branching programs (ABPs) which are known to be computationally equivalent to two basic tools in linear algebra: iterated matrix multiplication and the determinant. We compare the computational power of ... more >>>
A $(q,k,t)$-design matrix is an m x n matrix whose pattern of zeros/non-zeros satisfies the following design-like condition: each row has at most $q$ non-zeros, each column has at least $k$ non-zeros and the supports of every two columns intersect in at most t rows. We prove that the rank ... more >>>
This paper extends Valiant's work on $\vp$ and $\vnp$ to the settings in which variables are not multiplicatively commutative and/or associative. Our main result is a theory of completeness for these algebraic worlds.
We define analogs of Valiant's classes $\vp$ and $\vnp$, as well as of the polynomials permanent ...
more >>>
We give new pseudorandom generators for \emph{regular} read-once branching programs of small width.
A branching program is regular if the in-degree of every vertex in it is (0 or) $2$.
For every width $d$ and length $n$,
our pseudorandom generator uses a seed of length $O((\log d + \log\log n ...
more >>>
We initiate a direction for proving lower bounds on the size of non-commutative arithmetic circuits. This direction is based on a connection between lower bounds on the size of \emph{non-commutative} arithmetic circuits and a problem about \emph{commutative} degree four polynomials, the classical sum-of-squares problem: find the smallest $n$ such that ... more >>>
Bogdanov and Viola (FOCS 2007) constructed a pseudorandom
generator that fools degree $k$ polynomials over $\F_2$ for an arbitrary
constant $k$. We show that such generators can also be used to fool branching programs of width 2 and polynomial length that read $k$ bits of inputs at a
time. This ...
more >>>
We prove an exponential lower bound for the size of constant depth multilinear arithmetic circuits computing either the determinant or the permanent (a circuit is called multilinear, if the polynomial computed by each of its gates is multilinear). We also prove a super-polynomial separation between the size of product-depth $d$ ... more >>>
In this paper we show that lower bounds for bounded depth arithmetic circuits imply derandomization of polynomial identity testing for bounded depth arithmetic circuits. More formally, if there exists an explicit polynomial f(x_1,...,x_m) that cannot be computed by a depth d arithmetic circuit of small size then there exists ... more >>>
We study multilinear formulas, monotone arithmetic circuits, maximal-partition discrepancy, best-partition communication complexity and extractors constructions. We start by proving lower bounds for an explicit polynomial for the following three subclasses of syntactically multilinear arithmetic formulas over the field C and the set of variables {x1,...,xn}:
1. Noise-resistant. A syntactically multilinear ... more >>>
We construct an explicit polynomial $f(x_1,...,x_n)$, with
coefficients in ${0,1}$, such that the size of any syntactically
multilinear arithmetic circuit computing $f$ is at least
$\Omega( n^{4/3} / log^2(n) )$. The lower bound holds over any field.