We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness.
We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness.