The problem of minimizing the share size of threshold secret-sharing schemes is a basic research question that has been extensively studied. Ideally, one strives for schemes in which the share size equals the secret size. While this is achievable for large secrets (Shamir, CACM '79), no similar solutions are known ... more >>>
In this note, we study the interplay between the communication from a verifier in a general private-coin interactive protocol and the number of random bits it uses in the protocol. Under worst-case derandomization assumptions, we show that it is possible to transform any $I$-round interactive protocol that uses $\rho$ random ... more >>>
A major open problem in information-theoretic cryptography is to obtain a super-polynomial lower bound for the communication complexity of basic cryptographic tasks. This question is wide open even for very powerful non-interactive primitives such as private information retrieval (or locally-decodable codes), general secret sharing schemes, conditional disclosure of secrets, and ... more >>>
A secret-sharing scheme enables a dealer to share a secret $s$ among $n$ parties such that only authorized subsets of parties, specified by a monotone access structure $f:\{0,1\}^n\to\{0,1\}$, can reconstruct $s$ from their shares. Other subsets of parties learn nothing about $s$.
The question of minimizing the (largest) share size ... more >>>
Threshold cryptography is typically based on the idea of secret-sharing a private-key $s\in F$ ``in the exponent'' of some cryptographic group $G$, or more generally, encoding $s$ in some linearly homomorphic domain. In each invocation of the threshold system (e.g., for signing or decrypting) an ``encoding'' of the secret is ... more >>>
Let $C$ be an error-correcting code over a large alphabet $q$ of block length $n$, and assume that, a possibly corrupted, codeword $c$ is distributively stored among $n$ servers where the $i$th entry is being held by the $i$th server. Suppose that every pair of servers publicly announce whether the ... more >>>
In STOC 1989, Rabin and Ben-Or (RB) established an important milestone in the fields of cryptography and distributed computing by showing that every functionality can be computed with statistical (information-theoretic) security in the presence of an active (aka Byzantine) rushing adversary that controls up to half of the parties. We ... more >>>
A secret-sharing scheme allows to distribute a secret $s$ among $n$ parties such that only some predefined ``authorized'' sets of parties can reconstruct the secret, and all other ``unauthorized'' sets learn nothing about $s$. For over 30 years, it was known that any (monotone) collection of authorized sets can be ... more >>>
A secret-sharing scheme allows to distribute a secret $s$ among $n$ parties such that only some predefined ``authorized'' sets of parties can reconstruct the secret, and all other ``unauthorized'' sets learn nothing about $s$.
The collection of authorized/unauthorized sets can be captured by a monotone function $f:\{0,1\}^n\rightarrow \{0,1\}$.
more >>>
In STOC 1988, Ben-Or, Goldwasser, and Wigderson (BGW) established an important milestone in the fields of cryptography and distributed computing by showing that every functionality can be computed with perfect (information-theoretic and error-free) security at the presence of an active (aka Byzantine) rushing adversary that controls up to $n/3$ of ... more >>>
A secret-sharing scheme allows to distribute a secret $s$ among $n$ parties such that only some predefined ``authorized'' sets of parties can reconstruct the secret, and all other ``unauthorized'' sets learn nothing about $s$. The collection of authorized sets is called the access structure. For over 30 years, it was ... more >>>
We initiate the study of the following hypergraph sampling problem: Sample a $d$-uniform hypergraph over $n$ vertices and $m$ hyperedges from some pseudorandom distribution $\mathcal{G}$ conditioned on not having some small predefined $t$-size hypergraph $H$ as a subgraph. The algorithm should run in $\mathrm{poly}(n)$-time even when the size of the ... more >>>
In the *Conditional Disclosure of Secrets* (CDS) problem (Gertner et al., J. Comput. Syst. Sci., 2000) Alice and Bob, who hold $n$-bit inputs $x$ and $y$ respectively, wish to release a common secret $z$ to Carol (who knows both $x$ and $y$) if and only if the input $(x,y)$ satisfies ... more >>>
Private Simultaneous Message (PSM) protocols were introduced by Feige, Kilian and Naor (STOC '94) as a minimal non-interactive model for information-theoretic three-party secure computation. While it is known that every function $f:\{0,1\}^k\times \{0,1\}^k \rightarrow \{0,1\}$ admits a PSM protocol with exponential communication of $2^{k/2}$ (Beimel et al., TCC '14), the ... more >>>
Consider the following secret-sharing problem. Your goal is to distribute a long file $s$ between $n$ servers such that $(d-1)$-subsets cannot recover the file, $(d+1)$-subsets can recover the file, and $d$-subsets should be able to recover $s$ if and only if they appear in some predefined list $L$. How small ... more >>>
Yao's garbled circuit construction is a central cryptographic tool with numerous applications. In this tutorial, we study garbled circuits from a foundational point of view under the framework of \emph{randomized encoding} (RE) of functions. We review old and new constructions of REs, present some lower bounds, and describe some applications. ... more >>>
The gap-ETH assumption (Dinur 2016; Manurangsi and Raghavendra 2016) asserts that it is exponentially-hard to distinguish between a satisfiable 3-CNF formula and a 3-CNF formula which is at most 0.99-satisfiable. We show that this assumption follows from the exponential hardness of finding a satisfying assignment for *smooth* 3-CNFs. Here smoothness ... more >>>
In the \emph{conditional disclosure of secrets} problem (Gertner et al., J. Comput. Syst. Sci., 2000) Alice and Bob, who hold inputs $x$ and $y$ respectively, wish to release a common secret $s$ to Carol (who knows both $x$ and $y$) if only if the input $(x,y)$ satisfies some predefined predicate ... more >>>
Cryptographic hash functions are efficiently computable functions that shrink a long input into a shorter output while achieving some of the useful security properties of a random function. The most common type of such hash functions is {\em collision resistant} hash functions (CRH), which prevent an efficient attacker from finding ... more >>>
We present direct constructions of pseudorandom function (PRF) families based on Goldreich's one-way function. Roughly speaking, we assume that non-trivial local mappings $f:\{0,1\}^n\rightarrow \{0,1\}^m$ whose input-output dependencies graph form an expander are hard to invert. We show that this one-wayness assumption yields PRFs with relatively low complexity. This includes weak ... more >>>
Goos, Pitassi and Watson (ITCS, 2015) have recently introduced the notion of Zero-Information Arthur-Merlin Protocols (ZAM). In this model, which can be viewed as a private version of the standard Arthur-Merlin communication complexity game, Alice and Bob are holding a pair of inputs $x$ and $y$ respectively, and Merlin, the ... more >>>
\emph{Statistical Zero-knowledge proofs} (Goldwasser, Micali and Rackoff, SICOMP 1989) allow a computationally-unbounded server to convince a computationally-limited client that an input $x$ is in a language $\Pi$ without revealing any additional information about $x$ that the client cannot compute by herself. \emph{Randomized encoding} (RE) of functions (Ishai and Kushilevitz, FOCS ... more >>>
Suppose that you have $n$ truly random bits $x=(x_1,\ldots,x_n)$ and you wish to use them to generate $m\gg n$ pseudorandom bits $y=(y_1,\ldots, y_m)$ using a local mapping, i.e., each $y_i$ should depend on at most $d=O(1)$ bits of $x$. In the polynomial regime of $m=n^s$, $s>1$, the only known solution, ... more >>>
We study the possibility of computing cryptographic primitives in a fully-black-box arithmetic model over a finite field F. In this model, the input to a cryptographic primitive (e.g., encryption scheme) is given as a sequence of field elements, the honest parties are implemented by arithmetic circuits which make only a ... more >>>
A circuit $C$ \emph{compresses} a function $f:\{0,1\}^n\rightarrow \{0,1\}^m$ if given an input $x\in \{0,1\}^n$ the circuit $C$ can shrink $x$ to a shorter $\ell$-bit string $x'$ such that later, a computationally-unbounded solver $D$ will be able to compute $f(x)$ based on $x'$. In this paper we study the existence of ... more >>>
A one-way function is $d$-local if each of its outputs depends on at most $d$ input bits. In (Applebaum, Ishai, and Kushilevitz, FOCS 2004) it was shown that, under relatively mild assumptions, there exist $4$-local one-way functions (OWFs). This result is not far from optimal as it is not hard ... more >>>
Constant parallel-time cryptography allows to perform complex cryptographic tasks at an ultimate level of parallelism, namely, by local functions that each of their output bits depend on a constant number of input bits. A natural way to obtain local cryptographic constructions is to use \emph{random local functions} in which each ... more >>>
We study the problem of constructing locally computable Universal One-Way Hash Functions (UOWHFs) $H:\{0,1\}^n \rightarrow \{0,1\}^m$. A construction with constant \emph{output locality}, where every bit of the output depends only on a constant number of bits of the input, was established by [Applebaum, Ishai, and Kushilevitz, SICOMP 2006]. However, this ... more >>>
Yao's garbled circuit construction transforms a boolean circuit $C:\{0,1\}^n\to\{0,1\}^m$
into a ``garbled circuit'' $\hat{C}$ along with $n$ pairs of $k$-bit keys, one for each
input bit, such that $\hat{C}$ together with the $n$ keys
corresponding to an input $x$ reveal $C(x)$ and no additional information about $x$.
The garbled circuit ...
more >>>
We consider pseudorandom generators in which each output bit depends on a constant number of input bits. Such generators have appealingly simple structure: they can be described by a sparse input-output dependency graph and a small predicate that is applied at each output. Following the works of Cryan and Miltersen ... more >>>
We continue the study of pseudorandom generators (PRG) $G:\{0,1\}^n \rightarrow \{0,1\}^m$ in NC0. While it is known that such generators are likely to exist for the case of small sub-linear stretch $m=n+n^{1-\epsilon}$, it remains unclear whether achieving larger stretch such as $m=2n$ or even $m=n+n^2$ is possible. The existence of ... more >>>