A random variable $X$ is an $(n,k)$-zero-fixing source if for some subset $V\subseteq[n]$, $X$ is the uniform distribution on the strings $\{0,1\}^n$ that are zero on every coordinate outside of $V$. An $\epsilon$-extractor for $(n,k)$-zero-fixing sources is a mapping $F:\{0,1\}^n\to\{0,1\}^m$, for some $m$, such that $F(X)$ is $\epsilon$-close in statistical ... more >>>
We introduce the notion of monotone linear programming circuits (MLP circuits), a model of
computation for partial Boolean functions. Using this model, we prove the following results:
1. MLP circuits are superpolynomially stronger than monotone Boolean circuits.
2. MLP circuits are exponentially stronger than monotone span programs.
3. ...
more >>>
We show that if a Boolean function $f:\{0,1\}^n\to \{0,1\}$ can be computed by a monotone real circuit of size $s$ using $k$-ary monotone gates then $f$ can be computed by a monotone real circuit of size $O(sn^{k-2})$ which uses unary or binary monotone gates only. This partially solves an open ... more >>>
We prove new lower bounds on the sizes of proofs in the Cutting Plane proof system, using a concept that we call "unsatisfiability certificate". This approach is, essentially, equivalent to the well-known feasible interpolation method, but is applicable to CNF formulas that do not seem suitable for interpolation. Specifically, we ... more >>>
We study the \emph{random resolution} refutation system defined in~[Buss et al. 2014]. This attempts to capture the notion of a resolution refutation that may make mistakes but is correct most of the time. By proving the equivalence of several different definitions, we show that this concept is robust. On the ... more >>>
We study the space complexity of the cutting planes proof system, in which the lines in a proof are integral linear inequalities. We measure the space used by a refutation as the number of inequalities that need to be kept on a blackboard while verifying it. We show that any ... more >>>
We introduce a new concept, which we call partition expanders. The basic idea is to study quantitative properties of graphs in a slightly different way than it is in the standard definition of expanders. While in the definition of expanders it is required that the number of edges between any ... more >>>
A propositional proof system is \emph{weakly automatizable} if there
is a polynomial time algorithm which separates satisfiable formulas
from formulas which have a short refutation in the system, with
respect to a given length bound. We show that if the resolution
proof system is weakly automatizable, ...
more >>>
We say that a graph with $n$ vertices is $c$-Ramsey if it does not contain either a clique or an independent set of size $c \log n$. We define a CNF formula which expresses this property for a graph $G$. We show a superpolynomial lower bound on the length of ... more >>>
We prove an exponential lower bound on the lengths of resolution proofs of propositions expressing the finite Ramsey theorem for pairs.
more >>>We bound the minimum number $w$ of wires needed to compute any (asymptotically good) error-correcting code
$C:\{0,1\}^{\Omega(n)} \to \{0,1\}^n$ with minimum distance $\Omega(n)$,
using unbounded fan-in circuits of depth $d$ with arbitrary gates. Our main results are:
(1) If $d=2$ then $w = \Theta(n ({\log n/ \log \log n})^2)$.
(2) ... more >>>
We prove that the pseudorandom generator introduced in Impagliazzo et al. (1994) fools group products of a given finite group. The seed length is $O(\log n \log 1 / \epsilon)$, where $n$ is the length of the word and $\epsilon$ is the error. The result is equivalent to the statement ... more >>>
Khrapchenko's classical lower bound $n^2$ on the formula size of the
parity function~$f$ can be interpreted as designing a suitable
measure of subrectangles of the combinatorial rectangle
$f^{-1}(0)\times f^{-1}(1)$. Trying to generalize this approach we
arrived at the concept of \emph{convex measures}. We prove the
more >>>
We give the first exponential separation between quantum and
classical multi-party
communication complexity in the (non-interactive) one-way and
simultaneous message
passing settings.
For every k, we demonstrate a relational communication problem
between k parties
that can be solved exactly by a quantum simultaneous message passing
protocol of
cost ...
more >>>
We define propositional quantum Frege proof systems and compare it
with classical Frege proof systems.
We shall prove a lower bound on the number of edges in some bounded
depth graphs. This theorem is stronger than lower bounds proved on
bounded depth superconcentrators and enables us to prove a lower bound
on certain bounded depth circuits for which we cannot use
superconcentrators: we prove that ...
more >>>
In 1977 Valiant proposed a graph theoretical method for proving lower
bounds on algebraic circuits with gates computing linear functions.
He used this method to reduce the problem of proving
lower bounds on circuits with linear gates to to proving lower bounds
on the rigidity of a matrix, a ...
more >>>
The rank of a matrix has been used a number of times to prove lower
bounds on various types of complexity. In particular it has been used
for the size of monotone formulas and monotone span programs. In most
cases that this approach was used, there is not a single ...
more >>>
We consider some problems about pairs of disjoint $NP$ sets.
The theory of these sets with a natural concept of reducibility
is, on the one hand, closely related to the theory of proof
systems for propositional calculus, and, on the other, it
resembles the theory of NP completeness. Furthermore, such
more >>>
We show that an LK proof of size $m$ of a monotone sequent (a sequent
that contains only formulas in the basis $\wedge,\vee$) can be turned
into a proof containing only monotone formulas of size $m^{O(\log m)}$
and with the number of proof lines polynomial in $m$. Also we show
... more >>>
We consider computations of linear forms over {\bf R} by
circuits with linear gates where the absolute values
coefficients are bounded by a constant. Also we consider a
related concept of restricted rigidity of a matrix. We prove
some lower bounds on the size of such circuits and the
more >>>
We consider the conjecture stating that a matrix with rank
$o(n)$ and ones on the main diagonal must contain nonzero
entries on a $2\times 2$ submatrix with one entry on the main
diagonal. We show that a slightly stronger conjecture implies
that ...
more >>>
Razborov~\cite{Razborov96} recently proved that polynomial
calculus proofs of the pigeonhole principle $PHP_n^m$ must have
degree at least $\ceiling{n/2}+1$ over any field. We present a
simplified proof of the same result. The main
idea of our proof is the same as in the original proof
of Razborov: we want to describe ...
more >>>
We prove an unexpected upper bound on a communication game proposed
by Jeff Edmonds and Russell Impagliazzo as an approach for
proving lower bounds for time-space tradeoffs for branching programs.
Our result is based on a generalization of a construction of Erdos,
Frankl and Rodl of a large 3-hypergraph ...
more >>>
We investigate the computational power of depth two circuits
consisting of $MOD^r$--gates at the bottom and a threshold gate at
the top (for short, threshold--$MOD^r$ circuits) and circuits with
two levels of $MOD$ gates ($MOD^{p}$-$MOD^q$ circuits.) In particular, we
will show the following results
(i) For all prime numbers ... more >>>
We prove lower bounds of the form $exp\left(n^{\epsilon_d}\right),$
$\epsilon_d>0,$ on the length of proofs of an explicit sequence of
tautologies, based on the Pigeonhole Principle, in proof systems
using formulas of depth $d,$ for any constant $d.$ This is the
largest lower bound for the strongest proof system, for which ...
more >>>
We introduce a population genetics model in which the operators
are effectively computable -- computable in polynomial time on
Probabilistic Turing Machines. We shall show that in this model
a population can encode easily large amount of information
from enviroment into genetic code. Then it can process the
information as ...
more >>>