We present the first explicit construction of a non-malleable code that can handle tampering functions that are bounded-degree polynomials.
Prior to our work, this was only known for degree-1 polynomials (affine tampering functions), due to Chattopadhyay and Li (STOC 2017). As a direct corollary, we obtain an explicit non-malleable ... more >>>
Consider the following heuristic for building a decision tree for a function $f : \{0,1\}^n \to \{\pm 1\}$. Place the most influential variable $x_i$ of $f$ at the root, and recurse on the subfunctions $f_{x_i=0}$ and $f_{x_i=1}$ on the left and right subtrees respectively; terminate once the tree is an ... more >>>
We give a pseudorandom generator that fools $m$-facet polytopes over $\{0,1\}^n$ with seed length $\mathrm{polylog}(m) \cdot \log n$. The previous best seed length had superlinear dependence on $m$. An immediate consequence is a deterministic quasipolynomial time algorithm for approximating the number of solutions to any $\{0,1\}$-integer program.
more >>>We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e.~$\mathsf{AC^0}$ tampering functions), our codes have codeword length $n = k^{1+o(1)}$ for a $k$-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay ... more >>>
We prove that any non-adaptive algorithm that tests whether an unknown
Boolean function $f\colon \{0, 1\}^n\to\{0, 1\} $ is a $k$-junta or $\epsilon$-far from every $k$-junta must make $\widetilde{\Omega}(k^{3/2} / \epsilon)$ many queries for a wide range of parameters $k$ and $\epsilon$. Our result dramatically improves previous lower ...
more >>>
We prove an average-case depth hierarchy theorem for Boolean circuits over the standard basis of AND, OR, and NOT gates. Our hierarchy theorem says that for every $d \geq 2$, there is an explicit $n$-variable Boolean function $f$, computed by a linear-size depth-$d$ formula, which is such that any depth-$(d-1)$ ... more >>>
Monotone Boolean functions, and the monotone Boolean circuits that compute them, have been intensively studied in complexity theory. In this paper we study the structure of Boolean functions in terms of the minimum number of negations in any circuit computing them, a complexity measure that interpolates between monotone functions and ... more >>>
We study the complexity of approximating Boolean functions with DNFs and other depth-2 circuits, exploring two main directions: universal bounds on the approximability of all Boolean functions, and the approximability of the parity function.
In the first direction, our main positive results are the first non-trivial universal upper bounds on ...
more >>>
We study the challenging problem of learning decision lists attribute-efficiently, giving both positive and negative results.
Our main positive result is a new tradeoff between the running time and mistake bound for learning length-$k$ decision lists over $n$ Boolean variables. When the allowed running time is relatively high, our new ... more >>>