We investigate the task of deterministically condensing randomness from Online Non-Oblivious Symbol Fixing (oNOSF) sources, a natural model of defective random sources for which it is known that extraction is impossible [AORSV, EUROCRYPT'20]. A $(g,\ell)$-oNOSF source is a sequence of $\ell$ blocks $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_{\ell})\sim (\{0, 1\}^{n})^{\ell}$, where ... more >>>
We present the first explicit construction of two-sided lossless expanders in the unbalanced setting (bipartite graphs that have many more nodes on the left than on the right). Prior to our work, all known explicit constructions in the unbalanced setting achieved only one-sided lossless expansion.
Specifically, we show ... more >>>
While the existence of randomness extractors, both seeded and seedless, has been thoroughly studied for many sources of randomness, currently, very little is known regarding the existence of seedless condensers in many settings. Here, we prove several new results for seedless condensers in the context of three related classes of ... more >>>
We explicitly construct the first nontrivial extractors for degree $d \ge 2$ polynomial sources over $\mathbb{F}_2^n$. Our extractor requires min-entropy $k\geq n - \frac{\sqrt{\log n}}{(d\log \log n)^{d/2}}$. Previously, no constructions were known, even for min-entropy $k\geq n-1$. A key ingredient in our construction is an input reduction lemma, which allows ... more >>>
In a recent work, Chen, Hoza, Lyu, Tal and Wu (FOCS 2023) showed an improved error reduction framework for the derandomization of regular read-once branching programs (ROBPs). Their result is based on a clever modification to the inverse Laplacian perspective of space-bounded derandomization, which was originally introduced by Ahmadinejad, Kelner, ... more >>>
In a recent work, Gryaznov, Pudlák and Talebanfard (CCC '22) introduced a linear variant of read-once
branching programs, with motivations from circuit and proof complexity. Such a read-once linear branching program is
a branching program where each node is allowed to make $\mathbb{F}_2$-linear queries, and are read-once in the ...
more >>>
We continue a line of work on extracting random bits from weak sources that are generated by simple processes. We focus on the model of locally samplable sources, where each bit in the source depends on a small number of (hidden) uniformly random input bits. Also known as local sources, ... more >>>
We consider the problem of extracting randomness from \textit{sumset sources}, a general class of weak sources introduced by Chattopadhyay and Li (STOC, 2016). An $(n,k,C)$-sumset source $\mathbf{X}$ is a distribution on $\{0,1\}^n$ of the form $\mathbf{X}_1 + \mathbf{X}_2 + \ldots + \mathbf{X}_C$, where $\mathbf{X}_i$'s are independent sources on $n$ bits ... more >>>
Recently, there has been exciting progress in understanding the complexity of distributions. Here, the goal is to quantify the resources required to generate (or sample) a distribution. Proving lower bounds in this new setting is more challenging than in the classical setting, and has yielded interesting new techniques and surprising ... more >>>
We give an explicit construction of an affine extractor (over $\mathbb{F}_2$) that works for affine sources on $n$ bits with min-entropy $k \ge~ \log n \cdot (\log \log n)^{1 + o(1)}$. This improves prior work of Li (FOCS'16) that requires min-entropy at least $\mathrm{poly}(\log n)$.
Our construction is ...
more >>>
In recent work by Chattopadhyay et al.[CHHL19,CHLT19], the authors exhibit a simple and flexible construction of pseudorandom generators for classes of Boolean functions that satisfy $L_1$ Fourier bounds. [CHHL19] show that if a class satisfies such tail bounds at all levels, this implies a PRG whose seed length depends on ... more >>>
An $(n,r,s)$-design, or $(n,r,s)$-partial Steiner system, is an $r$-uniform hypergraph over $n$ vertices with pairwise hyperedge intersections of size $0$, we extract from $(N,K,n,k)$-adversarial sources of locality $0$, where $K\geq N^\delta$ and $k\geq\text{polylog }n$. The previous best result (Chattopadhyay et al., STOC 2020) required $K\geq N^{1/2+o(1)}$. As a result, we ... more >>>
In a seminal work, Nisan (Combinatorica'92) constructed a pseudorandom generator for length $n$ and width $w$ read-once branching programs with seed length $O(\log n\cdot \log(nw)+\log n\cdot\log(1/\varepsilon))$ and error $\varepsilon$. It remains a central question to reduce the seed length to $O(\log (nw/\varepsilon))$, which would prove that $\mathbf{BPL}=\mathbf{L}$. However, there has ... more >>>
In a recent work, Kumar, Meka, and Sahai (FOCS 2019) introduced the notion of bounded collusion protocols (BCPs), in which $N$ parties wish to compute some joint function $f:(\{0,1\}^n)^N\to\{0,1\}$ using a public blackboard, but such that only $p$ parties may collude at a time. This generalizes well studied models in ... more >>>
We present the first explicit construction of a non-malleable code that can handle tampering functions that are bounded-degree polynomials.
Prior to our work, this was only known for degree-1 polynomials (affine tampering functions), due to Chattopadhyay and Li (STOC 2017). As a direct corollary, we obtain an explicit non-malleable ... more >>>
Randomness extraction is a fundamental problem that has been studied for over three decades. A well-studied setting assumes that one has access to multiple independent weak random sources, each with some entropy. However, this assumption is often unrealistic in practice. In real life, natural sources of randomness can produce samples ... more >>>
A major challenge in complexity theory is to explicitly construct functions that have small correlation with low-degree polynomials over $F_2$. We introduce a new technique to prove such correlation bounds with $F_2$ polynomials. Using this technique, we bound the correlation of an XOR of Majorities with constant degree polynomials. In ... more >>>
We show that a very simple pseudorandom generator fools intersections of $k$ linear threshold functions (LTFs) and arbitrary functions of $k$ LTFs over $n$-dimensional Gaussian space.
The two analyses of our PRG (for intersections versus arbitrary functions of LTFs) are quite different from each other and from previous analyses of ... more >>>
We present explicit constructions of non-malleable codes with respect to the following tampering classes. (i) Linear functions composed with split-state adversaries: In this model, the codeword is first tampered by a split-state adversary, and then the whole tampered codeword is further tampered by a linear function. (ii) Interleaved split-state adversary: ... more >>>
We propose a new framework for constructing pseudorandom generators for $n$-variate Boolean functions. It is based on two new notions. First, we introduce fractional pseudorandom generators, which are pseudorandom distributions taking values in $[-1,1]^n$. Next, we use a fractional pseudorandom generator as steps of a random walk in $[-1,1]^n$ that ... more >>>
We present an explicit pseudorandom generator with seed length $\tilde{O}((\log n)^{w+1})$ for read-once, oblivious, width $w$ branching programs that can read their input bits in any order. This improves upon the work of Impaggliazzo, Meka and Zuckerman (FOCS'12) where they required seed length $n^{1/2+o(1)}$.
A central ingredient in our work ... more >>>
We show a reduction from the existence of explicit t-non-malleable
extractors with a small seed length, to the construction of explicit
two-source extractors with small error for sources with arbitrarily
small constant rate. Previously, such a reduction was known either
when one source had entropy rate above half [Raz05] or ...
more >>>
Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs as an elegant relaxation of error correcting codes, where the motivation is to handle more general forms of tampering while still providing meaningful guarantees. This has led to many elegant constructions and applications in cryptography. However, most works so far only ... more >>>
We make progress in the following three problems: 1. Constructing optimal seeded non-malleable extractors; 2. Constructing optimal privacy amplification protocols with an active adversary, for any possible security parameter; 3. Constructing extractors for independent weak random sources, when the min-entropy is extremely small (i.e., near logarithmic).
For the first ... more >>>
We propose a new model of weak random sources which we call sumset sources. A sumset source $\mathbf{X}$ is the sum of $C$ independent sources $\mathbf{X}_1,\ldots,\mathbf{X}_C$, where each $\mathbf{X}_i$ is an $n$-bit source with min-entropy $k$. We show that extractors for this class of sources can be used to give ... more >>>
We study how to extract randomness from a $C$-interleaved source, that is, a source comprised of $C$ independent sources whose bits or symbols are interleaved. We describe a simple approach for constructing such extractors that yields:
(1) For some $\delta>0, c > 0$,
explicit extractors for $2$-interleaved sources on $\{ ...
more >>>
We explicitly construct an extractor for two independent sources on $n$ bits, each with min-entropy at least $\log^C n$ for a large enough constant $C$. Our extractor outputs one bit and has error $n^{-\Omega(1)}$. The best previous extractor, by Bourgain [B2], required each source to have min-entropy $.499n$.
A key ... more >>>
Randomness extractors and error correcting codes are fundamental objects in computer science. Recently, there have been several natural generalizations of these objects, in the context and study of tamper resilient cryptography. These are \emph{seeded non-malleable extractors}, introduced by Dodis and Wichs \cite{DW09}; \emph{seedless non-malleable extractors}, introduced by Cheraghchi and Guruswami ... more >>>
Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs \cite{DPW10} as an elegant generalization of the classical notions of error detection, where the corruption of a codeword is viewed as a tampering function acting on it. Informally, a non-malleable code with respect to a family of tampering functions $\mathcal{F}$ consists ... more >>>
Let $X \subseteq \mathbb{R}^{n}$ and let ${\mathcal C}$ be a class of functions mapping $\mathbb{R}^{n} \rightarrow \{-1,1\}.$ The famous VC-Theorem states that a random subset $S$ of $X$ of size $O(\frac{d}{\epsilon^{2}} \log \frac{d}{\epsilon})$, where $d$ is the VC-Dimension of ${\mathcal C}$, is (with constant probability) an $\epsilon$-approximation for ${\mathcal C}$ ... more >>>