In this paper, we address the black-box polynomial identity testing (PIT) problem for non-commutative polynomials computed by $+$-regular circuits, a class of homogeneous circuits introduced by Arvind, Joglekar, Mukhopadhyay, and Raja (STOC 2017, Theory of Computing 2019). These circuits can compute polynomials with a number of monomials that are doubly ... more >>>
In this paper we study arithmetic computations over non-associative, and non-commutative free polynomials ring $\mathbb{F}\{x_1,x_2,\ldots,x_n\}$. Prior to this work, the non-associative arithmetic model of computation was considered by Hrubes, Wigderson, and Yehudayoff [HWY10]. They were interested in completeness and explicit lower bound results.
We focus on two main problems ... more >>>
An efficient randomized polynomial identity test for noncommutative
polynomials given by noncommutative arithmetic circuits remains an
open problem. The main bottleneck to applying known techniques is that
a noncommutative circuit of size $s$ can compute a polynomial of
degree exponential in $s$ with a double-exponential number of nonzero
monomials. ...
more >>>
In this paper we show that polynomial identity testing for
noncommutative circuits of size $s$, computing a polynomial in
$\mathbb{F}\langle z_1,z_2,\cdots,z_n \rangle$, can be done by a randomized algorithm
with running time polynomial in $s$ and $n$. This answers a question
that has been open for over ten years.
The ... more >>>
In this paper, we study the structure of set-multilinear arithmetic
circuits and set-multilinear branching programs with the aim of
showing lower bound results. We define some natural restrictions of
these models for which we are able to show lower bound results. Some
of our results extend existing lower bounds, while ...
more >>>
In this paper we explore the noncommutative analogues, $\mathrm{VP}_{nc}$ and
$\mathrm{VNP}_{nc}$, of Valiant's algebraic complexity classes and show some
striking connections to classical formal language theory. Our main
results are the following:
(1) We show that Dyck polynomials (defined from the Dyck languages of formal language theory) are complete for ... more >>>