In this paper we present a new proof system framework CLIP (Cumulation Linear Induction Proposition) for propositional model counting. A CLIP proof firstly involves a circuit, calculating the cumulative function (or running count) of models counted up to a point, and secondly a propositional proof arguing for the correctness of ... more >>>
QBF proof systems are routinely adapted from propositional logic along with adjustments for the new quantifications. Existing are two main successful frameworks, the reduction and expansion frameworks, inspired by QCDCL [Zhang et al. ICCAD.'2002] and CEGAR solving [Janota et al. Artif. Intell.'2016] respectively. However, the reduction framework, while immensely useful ... more >>>
Merge Resolution (MRes [Beyersdorff et al. J. Autom. Reason.'2021]) is a recently introduced proof system for false QBFs. Unlike other known QBF proof systems, it builds winning strategies for the universal player within the proofs. Every line of this proof system consists of existential clauses along with countermodels. MRes stores ... more >>>
Merge Resolution (MRes [Beyersdorff et al. J. Autom. Reason.'2021] ) is a refutational proof system for quantified Boolean formulas (QBF). Each line of MRes consists of clauses with only existential literals, together with information of countermodels stored as merge maps. As a result, MRes has strategy extraction by design. The ... more >>>
We show that the QRAT simulation algorithm of $\forall$Exp+Res from [B. Kiesl and M. Seidl, 2019] cannot be lifted to IR-calc.
more >>>We define a cutting planes system CP+$\forall$red for quantified Boolean formulas (QBF) and analyse the proof-theoretic strength of this new calculus. While in the propositional case, Cutting Planes is of intermediate strength between resolution and Frege, our findings here show that the situation in QBF is slightly more complex: while ... more >>>
In this short note, we revisit two hardness measures for resolution proofs: width and asymmetric width. It is known that for every unsatisfiable CNF F,
width(F \derives \Box) \le awidth(F \derives \Box) + max{ awidth(F \derives \Box), width(F)}.
We give a simple direct proof of the upper bound, ... more >>>
The groundbreaking paper `Short proofs are narrow - resolution made simple' by Ben-Sasson and Wigderson (J. ACM 2001) introduces what is today arguably the main technique to obtain resolution lower bounds: to show a lower bound for the width of proofs. Another important measure for resolution is space, and in ... more >>>
In sharp contrast to classical proof complexity we are currently short of lower bound techniques for QBF proof systems. In this paper we establish the feasible interpolation technique for all resolution-based QBF systems, whether modelling CDCL or expansion-based solving. This both provides the first general lower bound method for QBF ... more >>>