Can every $n$-bit boolean function with deterministic query complexity $k\ll n$ be restricted to $O(k)$ variables such that the query complexity remains $\Omega(k)$? That is, can query complexity be condensed via restriction? We study such hardness condensation questions in both query and communication complexity, proving two main results.
$\bullet~$ $\mathbf{Negative}$: ... more >>>
What is the $\Sigma_3^2$-circuit complexity (depth 3, bottom-fanin 2) of the $2n$-bit inner product function? The complexity is known to be exponential $2^{\alpha_n n}$ for some $\alpha_n=\Omega(1)$. We show that the limiting constant $\alpha=\limsup \alpha_n$ satisfies
\[
0.847... ~\leq~ \alpha ~\leq~ 0.965...\ .
\]
Determining $\alpha$ is one of the ...
more >>>
We present a top-down lower-bound method for depth-$4$ boolean circuits. In particular, we give a new proof of the well-known result that the parity function requires depth-$4$ circuits of size exponential in $n^{1/3}$. Our proof is an application of robust sunflowers and block unpredictability.
more >>>We prove two results about randomised query complexity $\mathrm{R}(f)$. First, we introduce a linearised complexity measure $\mathrm{LR}$ and show that it satisfies an inner-optimal composition theorem: $\mathrm{R}(f\circ g) \geq \Omega(\mathrm{R}(f) \mathrm{LR}(g))$ for all partial $f$ and $g$, and moreover, $\mathrm{LR}$ is the largest possible measure with this property. In particular, ... more >>>
The Collision problem is to decide whether a given list of numbers $(x_1,\ldots,x_n)\in[n]^n$ is $1$-to-$1$ or $2$-to-$1$ when promised one of them is the case. We show an $n^{\Omega(1)}$ randomised communication lower bound for the natural two-party version of Collision where Alice holds the first half of the bits of ... more >>>
It is well-known that Resolution proofs can be efficiently simulated by Sherali-Adams (SA) proofs. We show, however, that any such simulation needs to exploit huge coefficients: Resolution cannot be efficiently simulated by SA when the coefficients are written in unary. We also show that Reversible Resolution (a variant of MaxSAT ... more >>>
We show $\text{EOPL}=\text{PLS}\cap\text{PPAD}$. Here the class $\text{EOPL}$ consists of all total search problems that reduce to the End-of-Potential-Line problem, which was introduced in the works by Hubacek and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 2020). In particular, our result yields a new simpler proof of the breakthrough collapse ... more >>>
We use results from communication complexity, both new and old ones, to prove lower bounds for unambiguous finite automata (UFAs). We show three results.
$\textbf{Complement:}$ There is a language $L$ recognised by an $n$-state UFA such that the complement language $\overline{L}$ requires NFAs with $n^{\tilde{\Omega}(\log n)}$ states. This improves on ... more >>>
We show that computing the majority of $n$ copies of a boolean function $g$ has randomised query complexity $\mathrm{R}(\mathrm{Maj} \circ g^n) = \Theta(n\cdot \bar{\mathrm{R}}_{1/n}(g))$. In fact, we show that to obtain a similar result for any composed function $f\circ g^n$, it suffices to prove a sufficiently strong form of the ... more >>>
We exhibit an unambiguous $k$-DNF formula that requires CNF width $\tilde{\Omega}(k^{1.5})$. Our construction is inspired by the board game Hex and it is vastly simpler than previous ones, which achieved at best an exponent of $1.22$. Our result is known to imply several other improved separations in query and communication ... more >>>
We show that algebraic proofs are hard to find: Given an unsatisfiable CNF formula $F$, it is NP-hard to find a refutation of $F$ in the Nullstellensatz, Polynomial Calculus, or Sherali--Adams proof systems in time polynomial in the size of the shortest such refutation. Our work extends, and gives a ... more >>>
We show that Cutting Planes (CP) proofs are hard to find: Given an unsatisfiable formula $F$,
(1) it is NP-hard to find a CP refutation of $F$ in time polynomial in the length of the shortest such refutation; and
(2) unless Gap-Hitting-Set admits a nontrivial algorithm, one cannot find a ... more >>>
The randomized query complexity $R(f)$ of a boolean function $f\colon\{0,1\}^n\to\{0,1\}$ is famously characterized (via Yao's minimax) by the least number of queries needed to distinguish a distribution $D_0$ over $0$-inputs from a distribution $D_1$ over $1$-inputs, maximized over all pairs $(D_0,D_1)$. We ask: Does this task become easier if we ... more >>>
$\mathbf{Separations:}$ We introduce a monotone variant of XOR-SAT and show it has exponential monotone circuit complexity. Since XOR-SAT is in NC^2, this improves qualitatively on the monotone vs. non-monotone separation of Tardos (1988). We also show that monotone span programs over R can be exponentially more powerful than over finite ... more >>>
For any unsatisfiable CNF formula $F$ that is hard to refute in the Resolution proof system, we show that a gadget-composed version of $F$ is hard to refute in any proof system whose lines are computed by efficient communication protocols---or, equivalently, that a monotone function associated with $F$ has large ... more >>>
For any $n$-bit boolean function $f$, we show that the randomized communication complexity of the composed function $f\circ g^n$, where $g$ is an index gadget, is characterized by the randomized decision tree complexity of $f$. In particular, this means that many query complexity separations involving randomized models (e.g., classical vs.\ ... more >>>
We prove that the $\text{P}^{\small\text{NP}}$-type query complexity (alternatively, decision list width) of any boolean function $f$ is quadratically related to the $\text{P}^{\small\text{NP}}$-type communication complexity of a lifted version of $f$. As an application, we show that a certain "product" lower bound method of Impagliazzo and Williams (CCC 2010) fails to ... more >>>
We exhibit an $n$-node graph whose independent set polytope requires extended formulations of size exponential in $\Omega(n/\log n)$. Previously, no explicit examples of $n$-dimensional $0/1$-polytopes were known with extension complexity larger than exponential in $\Theta(\sqrt{n})$. Our construction is inspired by a relatively little-known connection between extended formulations and (monotone) circuit ... more >>>
We show that \emph{randomized} communication complexity can be superlogarithmic in the partition number of the associated communication matrix, and we obtain near-optimal \emph{randomized} lower bounds for the Clique vs.\ Independent Set problem. These results strengthen the deterministic lower bounds obtained in prior work (G\"o\"os, Pitassi, and Watson, {\small FOCS~2015}).
more >>>We describe a general method of proving degree lower bounds for conical juntas (nonnegative combinations of conjunctions) that compute recursively defined boolean functions. Such lower bounds are known to carry over to communication complexity. We give two applications:
$\bullet~$ $\textbf{AND-OR trees}$: We show a near-optimal $\tilde{\Omega}(n^{0.753...})$ randomised communication lower bound ... more >>>
We show that deterministic communication complexity can be superlogarithmic in the partition number of the associated communication matrix. We also obtain near-optimal deterministic lower bounds for the Clique vs. Independent Set problem, which in particular yields new lower bounds for the log-rank conjecture. All these results follow from a simple ... more >>>
We prove several results which, together with prior work, provide a nearly-complete picture of the relationships among classical communication complexity classes between $P$ and $PSPACE$, short of proving lower bounds against classes for which no explicit lower bounds were already known. Our article also serves as an up-to-date survey on ... more >>>
We prove an $\omega(\log n)$ lower bound on the conondeterministic communication complexity of the Clique vs. Independent Set problem introduced by Yannakakis (STOC 1988, JCSS 1991). As a corollary, this implies superpolynomial lower bounds for the Alon--Saks--Seymour conjecture in graph theory. Our approach is to first exhibit a query complexity ... more >>>
We develop a new method to prove communication lower bounds for composed functions of the form $f\circ g^n$ where $f$ is any boolean function on $n$ inputs and $g$ is a sufficiently ``hard'' two-party gadget. Our main structure theorem states that each rectangle in the communication matrix of $f \circ ... more >>>
We study whether information complexity can be used to attack the long-standing open problem of proving lower bounds against Arthur--Merlin (AM) communication protocols. Our starting point is to show that---in contrast to plain randomized communication complexity---every boolean function admits an AM communication protocol where on each yes-input, the distribution of ... more >>>
We study set-disjointness in a generalized model of randomized two-party communication where the probability of acceptance must be at least alpha(n) on yes-inputs and at most beta(n) on no-inputs, for some functions alpha(n)>beta(n). Our main result is a complete characterization of the private-coin communication complexity of set-disjointness for all functions ... more >>>