Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > DMITRY SOKOLOV:
All reports by Author Dmitry Sokolov:

TR23-181 | 20th November 2023
Mika Göös, Ilan Newman, Artur Riazanov, Dmitry Sokolov

Hardness Condensation by Restriction

Revisions: 1

Can every $n$-bit boolean function with deterministic query complexity $k\ll n$ be restricted to $O(k)$ variables such that the query complexity remains $\Omega(k)$? That is, can query complexity be condensed via restriction? We study such hardness condensation questions in both query and communication complexity, proving two main results.

$\bullet~$ $\mathbf{Negative}$: ... more >>>


TR23-086 | 8th June 2023
Dmitry Sokolov

Random $(\log n)$-CNF are Hard for Cutting Planes (Again)

The random $\Delta$-CNF model is one of the most important distribution over $\Delta\text{-}\mathrm{SAT}$ instances. It is closely connected to various areas of computer science, statistical physics, and is a benchmark for satisfiability algorithms. Fleming, Pankratov, Pitassi, and Robere and independently Hrubes and Pudlak showed that when $\Delta = \Theta(\log n)$, ... more >>>


TR23-071 | 8th May 2023
Yuval Filmus, Itai Leigh, Artur Riazanov, Dmitry Sokolov

Sampling and Certifying Symmetric Functions

A circuit $\mathcal{C}$ samples a distribution $\mathbf{X}$ with an error $\epsilon$ if the statistical distance between the output of $\mathcal{C}$ on the uniform input and $\mathbf{X}$ is $\epsilon$. We study the hardness of sampling a uniform distribution over the set of $n$-bit strings of Hamming weight $k$ denoted by $\mathbf{U}^n_k$ ... more >>>


TR23-049 | 17th April 2023
Mika Göös, Artur Riazanov, Anastasia Sofronova, Dmitry Sokolov

Top-Down Lower Bounds for Depth-Four Circuits

Revisions: 1

We present a top-down lower-bound method for depth-$4$ boolean circuits. In particular, we give a new proof of the well-known result that the parity function requires depth-$4$ circuits of size exponential in $n^{1/3}$. Our proof is an application of robust sunflowers and block unpredictability.

more >>>

TR22-054 | 21st April 2022
Anastasia Sofronova, Dmitry Sokolov

A Lower Bound for $k$-DNF Resolution on Random CNF Formulas via Expansion

Random $\Delta$-CNF formulas are one of the few candidates that are expected to be hard to refute in any proof system. One of the frontiers in the direction of proving lower bounds on these formulas is the $k$-DNF Resolution proof system (aka $\mathrm{Res}(k)$). Assume we sample $m$ clauses over $n$ ... more >>>


TR21-076 | 4th June 2021
Dmitry Sokolov

Pseudorandom Generators, Resolution and Heavy Width

Revisions: 1

Following the paper of Alekhnovich, Ben-Sasson, Razborov, Wigderson \cite{ABRW04} we call a pseudorandom generator $\mathrm{PRG}\colon \{0, 1\}^n \to \{0, 1\}^m$ hard for for a propositional proof system $\mathrm{P}$ if $\mathrm{P}$ cannot efficiently prove the (properly encoded) statement $b \notin \mathrm{Im}(\mathrm{PRG})$ for any string $b \in \{0, 1\}^m$.

In \cite{ABRW04} authors ... more >>>


TR21-028 | 27th February 2021
Anastasia Sofronova, Dmitry Sokolov

Branching Programs with Bounded Repetitions and $\mathrm{Flow}$ Formulas

Restricted branching programs capture various complexity measures like space in Turing machines or length of proofs in proof systems. In this paper, we focus on the application in the proof complexity that was discovered by Lovasz et al. '95 who showed the equivalence between regular Resolution and read-once branching programs ... more >>>


TR20-073 | 5th May 2020
Sam Buss, Dmitry Itsykson, Alexander Knop, Artur Riazanov, Dmitry Sokolov

Lower Bounds on OBDD Proofs with Several Orders

This paper is motivated by seeking lower bounds on OBDD($\land$, weakening, reordering) refutations, namely OBDD refutations that allow weakening and arbitrary reorderings. We first work with 1-NBP($\land$) refutations based on read-once nondeterministic branching programs. These generalize OBDD($\land$, reordering) refutations. There are polynomial size 1-NBP($\land$) refutations of the pigeonhole principle, hence ... more >>>


TR20-064 | 2nd May 2020
Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, Dmitry Sokolov, Susanna de Rezende

Automating Algebraic Proof Systems is NP-Hard

Revisions: 2

We show that algebraic proofs are hard to find: Given an unsatisfiable CNF formula $F$, it is NP-hard to find a refutation of $F$ in the Nullstellensatz, Polynomial Calculus, or Sherali--Adams proof systems in time polynomial in the size of the shortest such refutation. Our work extends, and gives a ... more >>>


TR20-012 | 14th February 2020
Dmitry Sokolov

(Semi)Algebraic Proofs over $\{\pm 1\}$ Variables

One of the major open problems in proof complexity is to prove lower bounds on $AC_0[p]$-Frege proof
systems. As a step toward this goal Impagliazzo, Mouli and Pitassi in a recent paper suggested to prove
lower bounds on the size for Polynomial Calculus over the $\{\pm 1\}$ basis. In this ... more >>>


TR19-174 | 2nd December 2019
Susanna de Rezende, Jakob Nordström, Kilian Risse, Dmitry Sokolov

Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs

We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson '01] and highly unbalanced, dense ... more >>>


TR19-001 | 5th January 2019
Dmitry Itsykson, Alexander Knop, Andrei Romashchenko, Dmitry Sokolov

On OBDD-based algorithms and proof systems that dynamically change order of variables

In 2004 Atserias, Kolaitis and Vardi proposed OBDD-based propositional proof systems that prove unsatisfiability of a CNF formula by deduction of identically false OBDD from OBDDs representing clauses of the initial formula. All OBDDs in such proofs have the same order of variables. We initiate the study of OBDD based ... more >>>


TR18-163 | 18th September 2018
Mika Göös, Pritish Kamath, Robert Robere, Dmitry Sokolov

Adventures in Monotone Complexity and TFNP

$\mathbf{Separations:}$ We introduce a monotone variant of XOR-SAT and show it has exponential monotone circuit complexity. Since XOR-SAT is in NC^2, this improves qualitatively on the monotone vs. non-monotone separation of Tardos (1988). We also show that monotone span programs over R can be exponentially more powerful than over finite ... more >>>


TR18-041 | 26th February 2018
Sam Buss, Dmitry Itsykson, Alexander Knop, Dmitry Sokolov

Reordering Rule Makes OBDD Proof Systems Stronger

Atserias, Kolaitis, and Vardi [AKV04] showed that the proof system of Ordered Binary Decision Diagrams with conjunction and weakening, OBDD($\land$, weakening), simulates CP* (Cutting Planes with unary coefficients). We show that OBDD($\land$, weakening) can give exponentially shorter proofs than dag-like cutting planes. This is proved by showing that the Clique-Coloring ... more >>>


TR17-175 | 13th November 2017
Ankit Garg, Mika Göös, Pritish Kamath, Dmitry Sokolov

Monotone Circuit Lower Bounds from Resolution

Revisions: 1

For any unsatisfiable CNF formula $F$ that is hard to refute in the Resolution proof system, we show that a gadget-composed version of $F$ is hard to refute in any proof system whose lines are computed by efficient communication protocols---or, equivalently, that a monotone function associated with $F$ has large ... more >>>


TR16-202 | 19th December 2016
Dmitry Sokolov

Dag-like Communication and Its Applications

Revisions: 1

In 1990 Karchmer and Widgerson considered the following communication problem $Bit$: Alice and Bob know a function $f: \{0, 1\}^n \to \{0, 1\}$, Alice receives a point $x \in f^{-1}(1)$, Bob receives $y \in f^{-1}(0)$, and their goal is to find a position $i$ such that $x_i \neq y_i$. Karchmer ... more >>>


TR15-174 | 18th October 2015
Dmitry Itsykson, Alexander Knop, Dmitry Sokolov

Complexity of distributions and average-case hardness

We address a natural question in average-case complexity: does there exist a language $L$ such that for all easy distributions $D$ the distributional problem $(L, D)$ is easy on the average while there exists some more hard distribution $D'$ such that $(L, D')$ is hard on the average? We consider ... more >>>


TR14-178 | 5th December 2014
Dmitry Itsykson, Alexander Knop, Dmitry Sokolov

Heuristic time hierarchies via hierarchies for sampling distributions

We give a new simple proof of the time hierarchy theorem for heuristic BPP originally proved by Fortnow and Santhanam [FS04] and then simplified and improved by Pervyshev [P07]. In the proof we use a hierarchy theorem for sampling distributions recently proved by Watson [W13]. As a byproduct we get ... more >>>


TR14-093 | 22nd July 2014
Dmitry Itsykson, Mikhail Slabodkin, Dmitry Sokolov

Resolution complexity of perfect mathcing principles for sparse graphs

The resolution complexity of the perfect matching principle was studied by Razborov [Raz04], who developed a technique for proving its lower bounds for dense graphs. We construct a constant degree bipartite graph $G_n$ such that the resolution complexity of the perfect matching principle for $G_n$ is $2^{\Omega(n)}$, where $n$ is ... more >>>


TR14-050 | 21st March 2014
Edward Hirsch, Dmitry Sokolov

On the probabilistic closure of the loose unambiguous hierarchy

Revisions: 1

Unambiguous hierarchies [NR93,LR94,NR98] are defined similarly to the polynomial hierarchy; however, all witnesses must be unique. These hierarchies have subtle differences in the mode of using oracles. We consider a "loose" unambiguous hierarchy $prUH_\bullet$ with relaxed definition of oracle access to promise problems. Namely, we allow to make queries that ... more >>>


TR12-141 | 22nd October 2012
Dmitry Itsykson, Dmitry Sokolov

Lower bounds for myopic DPLL algorithms with a cut heuristic

The paper is devoted to lower bounds on the time complexity of DPLL algorithms that solve the satisfiability problem using a splitting strategy. Exponential lower bounds on the running time of DPLL algorithms on unsatisfiable formulas follow from the lower bounds for resolution proofs. Lower bounds on satisfiable instances are ... more >>>




ISSN 1433-8092 | Imprint